XI OLIMPÍADA INTERNACIONAL DE MATEMÁTICA PARA ESTUDANTES UNIVERSITÁRIOS

23 a 29 de julho, Skopje - Macedônia

PRIMEIRO DIA

PROBLEMA 1

Seja S um conjunto infinito de números reais tal que $|x_1 + x_2 + ... + x_n| \le 1$ para todo subconjunto finito $\{x_1, x_2, ..., x_n\} \subset S$. Demonstre que S é enumerável.

PROBLEMA 2

Seja $f_1(x) = x^2 - 1$, e para cada inteiro positivo $n \ge 2$ defina $f_n(x) = f_{n-1}(f_1(x))$. Quantas raízes reais distintas tem o polinômio f_{2004} ?

PROBLEMA 3

Seja A_n o conjunto de todas as somas $\sum_{k=1}^n \arcsin x_k$, onde $n \ge 2$, $x_k \in [0,1]$, e $\sum_{k=1}^n x_k = 1$.

- i) Prove que A_n é um intervalo.
- ii) Seja a_n o comprimento do intervalo A_n . Calcule $\lim_{n\to\infty} a_n$.

PROBLEMA 4

Suponha $n \ge 4$ e seja S um conjunto finito de pontos no espaço \mathbb{R}^3 , de maneira que quaisquer quatro de seus pontos não sejam coplanares. Suponha que todos os pontos de S podem ser coloridos de vermelho e azul de modo que qualquer esfera que intersecte S em ao menos 4 pontos tenha a propriedade de que exatamente a metade dos pontos na interseção de S com a esfera é azul. Prove que todos os pontos de S encontram-se numa esfera.

PROBLEMA 5

Seja S um conjunto de $\binom{2n}{n}$ + 1 números reais, onde n é um inteiro positivo. Prove que onde

existe uma seqüência monótona $\{a_i\}_{1 \le i \le n+2} \subset S$ tal que

$$|x_{i+1}-x_1| \ge 2|x_i-x_1|,$$

para todo i = 2, 3, ..., n.

PROBLEMA 6

Para cada número complexo z diferente de 0 e 1 definimos a seguinte função:

$$f(z) = \sum \frac{1}{\log^4 z}$$

onde a soma é sobre todos os ramos do logaritmo complexo.

- i) Prove que há dois polinômios P e Q tais que $f(z) = \frac{P(z)}{Q(z)}$ para todo $z \in \mathbb{C} \{0,1\}.$
- ii) Prove que para todo $z \in \mathbb{C} \{0,1\}$ temos

$$f(z) = \frac{z^3 + 4z^2 + z}{6(z-1)^4}.$$

SEGUNDO DIA

PROBLEMA 7

Seja A uma matriz real 4×2 e B uma matriz real 2×4 tal que

$$AB = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{pmatrix}.$$

Encontre BA.

PROBLEMA 8

Sejam $f,g:[a,b] \to [0,\infty)$ duas funções continuas não decrescentes tais que para cada $x \in [a,b]$ temos

$$\int_{a}^{x} \sqrt{f(t)} dt \le \int_{a}^{x} \sqrt{g(t)} dt e \int_{a}^{b} \sqrt{f(t)} dt = \int_{a}^{b} \sqrt{g(t)} dt.$$

Prove que

$$\int_{a}^{b} \sqrt{1+f(t)} dt \ge \int_{a}^{b} \sqrt{1+g(t)} dt.$$

PROBLEMA 9

Seja D um disco unitário fechado, e sejam $z_1, z_2, ..., z_n$ pontos fixados em D. Prove que existe um ponto z em D tal que a soma das distancias desde z a cada um dos n pontos é maior ou igual que n.

PROBLEMA 10

Para $n \geq 1$ seja M uma matriz complexa $n \times n$ com autovalores $\lambda_1, \lambda_2, ..., \lambda_k$, distintos com respectivas multiplicidades $m_1, m_2, ..., m_k$. Considere o operador linear L_M definido por $L_M X = MX + XM^T$, para qualquer X matriz complexa $n \times n$. Encontre os autovalores de L_M e suas multiplicidades.

PROBLEMA 11

Prove que

$$\int_0^1 \int_0^1 \frac{dx \, dy}{\frac{1}{x} + \left| \log y \right| - 1} \le 1.$$

PROBLEMA 12

Para $n \ge 0$ defina as matrizes A_n e B_n como segue: $A_0 = B_0 = (1)$, e, para cada n > 0,

$$A_{n} = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & B_{n-1} \end{pmatrix} e \quad B_{n} = \begin{pmatrix} A_{n-1} & A_{n-1} \\ A_{n-1} & 0 \end{pmatrix}.$$

Denote por S(M) a soma de todos os elementos da matriz M. Prove que $S\left(A_n^{k-1}\right) = S\left(A_k^{n-1}\right)$, para quaisquer $n, k \ge 2$.