CAPÍTULO $oldsymbol{1}$

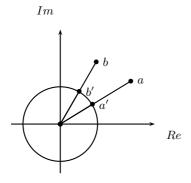
Geometria com Números Complexos

A partir de agora vamos aprender a usar os números complexos na geometria plana. Os números complexos são muito mais do que vetores, eles formam um corpo. Desse modo podemos somá-los, multiplicá-los, observar seu módulo,... e tudo isso sem sair do plano complexo. Essas propriedades extras que vamos usar a nosso favor durante o estudo desse capítulo.

1.1 Ângulos

Uma grande vantagem dos complexos sobre vetores é a possibilidade de se trabalhar com ângulos. Porém devemos nos lembrar que no plano complexo trabalhamos com ângulos orientados, ou seja $\angle ABC = -\angle CBA$. O próximo problema irá determinar uma fórmula para achar ângulos.

▶ Problema. Dados $a, b \in \mathbb{C}$ ache o ângulo $\angle a0b$.



Sejam a'=a/|a| e b'=b/|b| Ou seja a' e b' são os pontos onde as retas 0a e 0b encontram o círculo unitário. Agora note que:

$$arg(a) = arg(a') = \alpha \ e \ arg(b) = arg(b') = \beta$$

Usando a fórmula de Euler, sabemos que:

$$\frac{b'}{a'} = e^{i(\beta - \alpha)}$$
 ou seja:

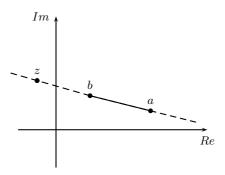
$$arg\left(\frac{b}{a}\right) = arg \, b - arg \, a$$

Para achar o ângulo $\angle abc$ basta aplicar uma translação -b e cair no caso anterior. Dessa forma obtemos a seguinte relação: $\angle abc = \arg\left(\frac{c-b}{a-b}\right)$.

1.2 Equação da Reta

Outra ferramenta necessária para fazer problemas de geometria é saber a equação de uma reta que passa por dois pontos fixados.

▶ Problema. Dados dois pontos $a,b\in\mathbb{C}$ como achar a equação da reta que passa por a e b?



 $z - a = \lambda(b - a)$, onde λ é um real

$$\overline{z} - \overline{a} = \lambda (\overline{b} - \overline{a})$$

$$\Rightarrow \frac{z-a}{b-a} = \frac{\overline{z} - \overline{a}}{\overline{b} - \overline{a}}$$

Essa equação pode parecer um pouco estranha, mas olha que acontece quando tomamos a, b no circulo unitário, ou seja quando $a^{-1} = \overline{a}$ e $b^{-1} = \overline{b}$:

$$\frac{z-a}{b-a} = \frac{\overline{z} - \frac{1}{a}}{\frac{1}{b} - \frac{1}{a}}$$

Fazendo as contas obtemos:

$$\boxed{z + \overline{z}ab = a + b}$$

Observações:

- i. O conjunto de retas $z + \overline{z}ab = k$, onde $k \in \mathbb{C}$ é o conjunto de retas paralelas à reta ab.
- ii. As retas $z \overline{z}ab = k$ são o conjunto de retas perpendiculares à reta ab

iii. A equação da reta tangente ao disco unitário em $c\in\mathbb{C}$ é dada por $z+\overline{z}c^2=2c$

iv. Se $a \in b$ são unitários, os pontos médios dos arcos a^2b^2 são $ab \in -ba$.

Para resumir as idéias da duas últimas seções vamos resolver o seguinte problema que apareceu em um dos teste de seleção do Irã para a IMO de 2004.

Problema 1. Seja ABC um triângulo com circuncentro O. Uma reta r passando por O, corta AB e AC em M e N respectivamente. Seja S o ponto médio de BN e R o de CM. Mostre que $\angle ROS = \angle BAC$

Solução. Sejam 0,a,b,c as coordenadas complexas dos pontos O,A,B,C, respectivamente. Suponha sem perca de generalidade que a equação da reta r seja $z-\overline{z}=0$. Sabemos que a retas AB é dada por $z+\overline{z}ab=a+b$. Como $M\in r\cap AB$, temos que: $m+\overline{m}ab=a+b$ e $m-\overline{m}=0$. Fazendo uma substituição, encontramos que $m=\frac{a+b}{1+ab}$.

De modo análogo, podemos achar que $n=\frac{a+c}{1+ac}$. Daí, usando o fato de R e S serem pontos médios, obtemos:

$$2r = \frac{a+b+c+abc}{1+ab}$$
 e
$$2s = \frac{a+b+c+abc}{1+ac}$$

Assim, $\angle ROS = \arg\left(\frac{r}{s}\right) = \arg\left(\frac{1+ab}{1+ac}\right)$ e como $\angle BAC = \arg\left(\frac{b-a}{c-a}\right)$. Para mostrar que $\angle ROS = \angle BAC$, devemos mostrar que:

$$\omega = \frac{1+ab}{1+ac} \cdot \frac{c-a}{b-a} \in \mathbb{R}^+$$

Como os ângulos $\angle ROS$ e $\angle BAC$ são menores que 180°, basta mostrar que ω é real, ou seja, que $\omega=\overline{\omega}$:

$$\omega = \overline{\omega} \Leftrightarrow \frac{1+ab}{1+ac} \cdot \frac{c-a}{b-a} = \frac{1+\frac{1}{ab}}{1+\frac{1}{ac}} \cdot \frac{\frac{1}{c}-\frac{1}{a}}{\frac{1}{b}-\frac{1}{a}} = \frac{\frac{1+ab}{ab}}{\frac{ac+1}{ac}} \cdot \frac{\frac{a-c}{ac}}{\frac{a-b}{ab}}$$

1.3 Pontos Notáveis

Como os números complexos são vetores as coordenadas do baricentro e do ortocentro são análogas às encontradas na geometria vetorial. As coordenadas do incentro e dos excentros podem ser obtidas a partir da equação do ponto médio do arco a^2b^2 . Para descobrir o circuncentro, use $o(a+b)\perp ab$.

• Baricentro: de um $\triangle abc$ qualquer $g = \frac{a+b+c}{3}$

• <u>Circuncertro</u>: de um $\triangle abc$ qualquer $o = \frac{|a|^2(b-c) + |b|^2(c-a) + |c|^2(a-b)}{\overline{a}(b-c) + \overline{b}(c-a) + \overline{c}(a-b)}$

• Ortocentro: de um $\triangle abc$ qualquer h = a + b + c - 2o (o circuncentro)

• Incentro: de um $\triangle a^2b^2c^2$ inscrito no circulo unitário é i=-ab-bc-ca

• Excentro: de um $\triangle a^2b^2c^2$ inscrito no circulo unitário é $e_a=-bc+ca+ab$

Cuidado! Quando temos quatro pontos unitários $a,b,c,d\in\mathbb{C}$ não podemos afirmar que os incentros dos triângulos $a^2b^2c^2$ e $b^2c^2d^2$ são simultaneamente $i_1=-ab-bc-ca$ e $i_2=-bc-cd-db$. Pois, antes de deduzir esta fórmula, inicialmente escolhemos a,b,c de modo que os pontos médios interiores tenham sempre o sinal de menos. Isso pode ser feito sem perca de generalidade apenas quando temos três ou dois pontos.

1.4 Medidas e Semelhanças

Agora vamos observar o comportamento dos complexos ao serem visto como um espaço métrico. Como já sabemos; a medida do segmento ab, com $a,b\in\mathbb{C}$ é dada por |b-a|. E como um fato tão simples pode nos ajudar? Basta usar a desigualdade triangular:

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$

ocorrendo a igualdade se e somente se $z_1, z_2, ..., z_n$ são todos colineares.

Outra forma de usar o módulo é na semelhança de triângulos. Sabemos que os triângulos $\triangle w_1w_2w_3$ e $\triangle z_1z_2z_3$ são semelhantes se e somente se as razões entre as medidas entre os lados correspondentes são iguais e o ângulo entre eles também for o mesmo. Ou seja:

$$\left| \frac{z_2 - z_1}{z_3 - z_1} \right| = \left| \frac{w_2 - w_1}{w_3 - w_1} \right| \qquad e \qquad \arg \frac{z_2 - z_1}{z_3 - z_1} = \arg \frac{w_2 - w_1}{w_3 - w_1}$$

$$\Leftrightarrow \frac{z_2 - z_1}{z_3 - z_1} = \frac{w_2 - w_1}{w_3 - w_1}$$

$$\Leftrightarrow \begin{vmatrix} z_1 & w_1 & 1 \\ z_2 & w_2 & 1 \\ z_3 & w_3 & 1 \end{vmatrix} = 0$$

Quando os triângulos são semelhantes mas possuem diferentes orientações podemos obter uma fórmula similar:

$$\begin{vmatrix} z_1 & w_1 & 1 \\ z_2 & \overline{w_2} & 1 \\ z_3 & \overline{w_3} & 1 \end{vmatrix} = 0$$

Exercício: Use a fórmula acima para achar a equação da mediatriz do segmento ab.

5

1.5 Transformações Geométricas

Nesta seção vamos abordar apenas as duas transformações que podem oferecer ao aluno um pouco de dificuldade. São elas: reflexão por uma reta e rotação. A reflexão por um ponto e a translação apesar de serem bastante usadas, possuem contas fáceis de ser efetuadas.

• Reflexão: Dada a reta $r: z + \overline{z}m = n$ e um ponto $w \in \mathbb{C}$ determine o ponto v que é imagem de w sobre r.

Como a reta wv é perpendicular à reta r a sua equação é dada pela fórmula: $z - \overline{z}m = k$. Daí, $w - \overline{w}m = v - \overline{v}m$, ou seja $\overline{v}m = v + \overline{w}m - w$. Por outro lado, sabemos que o ponto médio de wv está sobre r assim: $w + v + (\overline{w} + \overline{v})m = 2n$. Efetuando as contas obtemos que:

$$v = n - \overline{w}m$$

• Rotação: Dados $a, w \in \mathbb{C}$ e um ângulo θ determine as coordenadas de v de modo que |v - a| = |w - a| e $\angle wav = \theta$.

Após aplicar uma translação -a fica fácil ver que:

$$v = (w - a)e^{i\theta} + a$$

1.6 Áreas

Da geometria plana, sabemos que a área de um triângulo com vértices 0, z_1 e z_2 é dada pela fórmula

$$A = \frac{1}{2}|z_1||z_2|\sin(\theta_2 - \theta_1)$$

Traduzindo essa equação para os complexos ficamos com $A=\frac{1}{2}\Im(z_2\overline{z_1})$. Agora, se o triângulo tiver vértices z_1, z_2 e z_3 basta fazer uma translação $-z_3$ e aplicar a última fórmula. Desse modo, obtemos $[z_1z_2z_3]=\frac{1}{2}\Im(z_2\overline{z_1}+z_3\overline{z_2}+z_1\overline{z_3})$. Para generalizar para um polígono convexo, tome um ponto no seu interior como a origem (se não for, faça uma translação!). Com isso, a área de um polígono convexo $z_1z_2...z_n$ é dada por:

$$S_n = \frac{1}{2}\Im(z_2\overline{z_1} + z_3\overline{z_2} + \dots + z_1\overline{z_n})$$

1.7 Desigualdade Triangular

1. (Romênia 2004) Considere o triângulo ABC e O um ponto no seu inteiror. As retas OA, OB, OC encontram os lados do triângulo nos pontos A_1 ,

 B_1 , C_1 , respectivamente. Sejam R_1 , R_2 , R_3 os circunraios dos triângulos OBC, OCA, OAB, respectivamente e R o circunraio do triângulo ABC. Prove que

$$\frac{OA_1}{AA_1}R_1 + \frac{OB_1}{BB_1}R_2 + \frac{OC_1}{CC_1}R_3 \ge R.$$

2. (Teorema Ptolomeu) Seja ABCD um quadrilátero qualquer. Mostre que:

$$\overline{AB} \cdot \overline{CD} + \overline{BC} \cdot \overline{DA} > \overline{AC} \cdot \overline{BD}$$

ocorrendo a igualdade se e somente se ABCD é cíclico.

3. Sejam $P \in Q$ dois pontos no plano do triângulo ABC. Mostre que:

$$BC \cdot PA \cdot QA + CA \cdot PB \cdot QB + AB \cdot PC \cdot QC \ge BC \cdot CA \cdot AB$$
.

1.8 Problemas Propostos

1. Na geometria analítica a equação do círculo que passa por três pontos não colineares (x_1, y_1) , (x_2, y_2) e (x_3, y_3) é dada por:

$$\begin{vmatrix} x^2 + y^2 & x & y & 1 \\ x_1^2 + y_1^2 & x_1 & y_1 & 1 \\ x_2^2 + y_2^2 & x_2 & y_2 & 1 \\ x_3^2 + y_3^2 & x_3 & y_3 & 1 \end{vmatrix} = 0$$

Ache uma fórmula correspondente para o plano complexo.

- 2. (Napoleão) Sobre cada lado de um triângulo, desenhe um triângulo eqüilátero (no exterior). Prove que os baricentros desses três triângulos eqüiláteros são vértices de um outro de triângulo eqüilátero.
- 3. (IME) Seja ABC um triângulo e P,Q,S as interseções das tangentes ao circuncírculo nos vértices com as extensões dos respectivos lados opostos. Mostre que os pontos P,Q,R são colineares.
- 4. $(Rom \hat{e}nia\ 2002)$ Seja ABCDE um pentágono inscrito em uma circunferência de centro O que tem ângulos $\angle B=120^\circ, \angle C=120^\circ, \angle D=130^\circ$ e $\angle E=100^\circ.$ Mostre que as diagonais BD e CE se encontram em um ponto de AO.
- 5. (Banco IMO 1998) Seja ABC um triângulo, H seu ortocentro, O o seu circuncentro e R o circunraio. Seja D a reflexão de através de BC, E a reflexão de B através de CA e F a reflexão de C através de AB. Prove que D, E, F são colineares se e somente se OH = 2R.
- 6. (Banco IMO 1998) Seja ABCDEF um quadrilátero tal que $\angle B + \angle D + \angle F = 360^{\circ}$ e $\frac{AB}{BC}\frac{CD}{DE}\frac{EF}{FA} = 1$. Prove que $\frac{BC}{CA}\frac{AE}{EF}\frac{FD}{DB} = 1$.

- 7. (Banco IMO 1998) Seja ABC um triângulo tal que $\angle ACB = 2\angle ABC$. Seja D um ponto sobre o lado BC tal que CD = 2BD. O segmento AD é estendido até E tal que AD = DE. Prove que $\angle ECB + 180^{\circ} = 2\angle EBC$.
- 8. (Torneio das Cidades) Os triângulos ABC e A'B'C' são semelhantes com orientações distintas. Mostre que os pontos médios dos segmentos AA', BB', CC' são colineares.
- 9. $(Banco\ IMO\ 1992)$ Seja ABCD um quadrilátero convexo tal que AC=BD. Triângulos eqüiláteros são construídos externamente sobre os lados do quadrilátero. Prove que os segmentos ligando os baricentros dos triângulos opostos são perpendiculares.
- 10. (Putnam 1967) Seja ABCDEF um hexágono inscrito em uma circunferência de raio r de modo que AB = CD = EF = r. Prove que os pontos médios dos segmentos BC, DE, FA são vértices de um triângulo eqüilátero.
- 11. $(OBM\ 2003)$ Seja ABCD um losango. Sejam E, F, G, H pontos sobre os lados AB, BC, CD, DA, respectivamente, e tais que as retas EF e GH são tangentes à circunferência inscrita no losango. Prove que as retas EH e FG são paralelas.
- 12. (IMO 1993) Um ponto D é escolhido dentro de um triângulo escaleno ABC tal que $\angle ADB = \angle ACB + 90^\circ$ e $AC \cdot BD = AD \cdot BC$. Encontre o valor de $\frac{AB \cdot CD}{AC \cdot BD}$.
- 13. (Leningrado 1991) A corda AB divide um círculo em dois arcos cujos pontos médios são M e N. Uma rotação sobre A por um ângulo θ leva B em B' e M em M'. Prove que os segmentos que ligam o ponto médio de BB' com os pontos M' e N são perpendiculares.
- 14. (Leningrado 1991) O ponto P está fora de um círculo de centro O. A reta l_1 passando por P é tangente ao círculo em A e a reta l_2 que também passa por P corta o círculo nos pontos B e C. As tangentes ao círculo passando por B e C se encontram em X. Prove que $AX \perp PO$.
- 15. (MOP) Seja H o ortocentro do triângulo ABC. O círculo de diâmetro CH intercepta os lados BC e AC nos pontos P e Q respectivamente. Mostre que as tangentes a esse círculo nos pontos P e Q interceptam-se no ponto médio de AB.
- 16. (Romênia 1999) O incírculo do $\triangle ABC$ toca os lados BC, CA, AB em A_1, B_1, C_1 respectivamente. Seja K o ponto no incírculo diametralmente oposto a C_1 e D o ponto de encontro das retas B_1C_1 e A_1K . Prove que $CD = CB_1$.

- 17. $(Ir\tilde{a}\ 1995)$ Sejam M, N, P os pontos de interseção do incírculo do $\triangle ABC$ com os lados BC, CA, AB, respectivamente. Prove que o ortocentro do $\triangle MNP$, o incentro do $\triangle ABC$ e o circuncentro do $\triangle ABC$ são colineares.
- 18. $(Russia\ 1997)$ O incirculo do $\triangle ABC$ toca os lados AB, BC, CA em M, N, K, respectivamente. A reta por A e paralela à NK encontra MN em D. A reta por A e paralela a MN corta NK em E. Mostre que DE bissecta os lados AB e AC.
- 19. (Russia 2003) No triângulo isósceles (AB = BC) a base média relativa a BC intersecta se incírculo no ponto F (que não está sobre AC). Prove que a tangente ao incírculo por F corta a bissetriz do ângulo $\angle C$ em um ponto sobre AB.
- 20. $(Iugoslávia\ 1992)$ Três quadrados ACGF, CBED e ABHI são constrídos exteriormente aos lados do triângulo ABC. Sejam, CDQG e BEPH paralelogramos. Prove que o triângulo PAQ é isósceles e retângulo.
- 21. Em um quadrilátero convexo ABCD, O é encontro das diagonais. Sejam S_1 e S_2 os baricentros dos triângulos AOB e COD e H_1 e H_2 os ortocentros dos triângulos BOC e DOA. Mostre que $H_1H_2\bot S_1S_2$.
- 22. $(Ir\tilde{a}\ 2003)$ Sejam P e Q pontos sobre os lados BC e DC, respectivamente de um quadrilátero convexo ABCD tais que $\angle BAP = \angle DAQ$. Prove que [ABP] = [ADQ] se e somente se a reta que liga os ortocentros destes triângulos é perpendicular à reta AC.

Referências:

- [1] Edmilson Motta, Aplicações dos números complexos à geometria, Eureka! $6\,$
 - [2] Liang Shin Hahn, Complex numbers & Geometry, MAA 1994