The 8th Romanian Master of Mathematics Competition

Dia 1: Sexta-Feira, 26 de fevereiro de 2016, Bucareste

Language: Portuguese

Problema 1. Considere um triângulo ABC e seja D um ponto do segmento BC, $D \neq B$ e $D \neq C$. A circunferência circunscrita ao triângulo ABD intersecta novamente o segmento AC no ponto interior E. A circunferência circunscrita ao triângulo ACD intersecta novamente o segmento AB no ponto interior F. Seja A' o simétrico de A em relação à reta BC. As retas A'C e DE se intersectam em P e as retas A'B e DF se intersectam em Q. Prove que as retas AD, BP e CQ são concorrentes (ou são paralelas).

Problema 2. Sejam m e n inteiros positivos, com $n \ge m$. Determine a maior quantidade possível de dominós (retângulos 1×2 ou 2×1) que podem ser colocados em um tabuleiro retangular com m linhas e 2n colunas, composto por casas (quadrados 1×1), de maneira que:

- (i) cada dominó cubra exatamente duas casas adjacentes do tabuleiro;
- (ii) não haja sobreposição de dominós;
- (iii) nenhum quadrado 2 × 2 seja coberto por dois dominós; e
- (iv) a última linha do tabuleiro seja coberta por exatamente n dominós.

Problema 3. Uma sequência cúbica é uma sequência de inteiros definida por $a_n = n^3 + bn^2 + cn + d$, onde b, c e d são constantes inteiras e n varia no conjunto dos números inteiros, incluindo os inteiros negativos.

- (a) Mostre que existe uma sequência cúbica tal que os únicos termos desta sequência que são quadrados de inteiros sejam a_{2015} e a_{2016} .
- (b) Determine os possíveis valores de $a_{2015} \cdot a_{2016}$ para uma sequência cúbica que satisfaça as condições do item (a).

Cada problema vale 7 pontos. Duração: 4 horas e 30 minutos.

The 8th Romanian Master of Mathematics Competition

Dia 2: Sábado, 27 de fevereiro de 2016, Bucareste

Language: Portuguese

Problema 4. Sejam x e y números reais positivos tais que $x+y^{2016} \ge 1$. Prove que $x^{2016}+y>1-1/100$.

Problema 5. Seja $A_1B_1A_2B_2A_3B_3$ um hexágono convexo inscrito em uma circunferência Ω de raio R. As diagonais A_1B_2 , A_2B_3 e A_3B_1 são concorrentes em um ponto X. Para i=1,2,3, seja ω_i a circunferência tangente aos segmentos XA_i , XB_i e ao arco A_iB_i de Ω que não contém os outros vértices do hexágono. Seja r_i o raio de ω_i .

- (a) Prove que $R \ge r_1 + r_2 + r_3$.
- (b) Se $R = r_1 + r_2 + r_3$, prove que os seis pontos onde as circunferências ω_i tangenciam as diagonais A_1B_2 , A_2B_3 , A_3B_1 são concíclicos.

Problema 6. Um conjunto de n pontos pertencentes ao espaço euclidiano tridimensional, sem quatro pontos coplanares, é particionado em dois subconjuntos \mathcal{A} e \mathcal{B} . Uma \mathcal{AB} -árvore é uma configuração de n-1 segmentos, cada um dos quais possui uma extremidade em \mathcal{A} e a outra em \mathcal{B} , sem que haja um conjunto de segmentos formando uma linha poligonal fechada.

Uma \mathcal{AB} -árvore é transformada em outra da seguinte maneira: escolhemse três segmentos distintos A_1B_1 , B_1A_2 e A_2B_2 pertencentes à \mathcal{AB} -árvore de modo que A_1 pertença a \mathcal{A} e $A_1B_1 + A_2B_2 > A_1B_2 + A_2B_1$; remove-se então o segmento A_1B_1 , substituindo-o pelo segmento A_1B_2 .

Dada uma \mathcal{AB} -árvore qualquer, prove que toda sequência de transformações sucessivas chega ao fim (isto é, não é possível fazer nenhuma outra transformação) após um número finito de passos.

Cada problema vale 7 pontos. Duração: 4 horas e 30 minutos.