Circunferências tangentes entre si e o Lema da estrela da morte

Semana Olímpica/2018 - Nível 2

Prof. Armando Barbosa

Maceió, 25 de janeiro de 2018

1 Exercícios extras

Problema 1 (Coreia do Sul/2016) Num triângulo acutângulo ABC, sejam D e E os pés das alturas relativas aos pontos B e C em tal triângulo. Sejam S e T as reflexões do ponto E em relação aos lados AC e BC, respectivamente. Seja $X \neq C$ o segundo ponto de interseção de (CST) e AC. Sendo O o circuncentro do triângulo CST, prove que $XO \perp DE$.

Problema 2 (EGMO/2016) Duas circunferências ω_1 e ω_2 de raios iguais intersectam-se nos pontos X_1 e X_2 . Considere uma circunferência ω tangente externamente a ω_1 em T_1 e tangente internamente a ω_2 em T_2 . Prove que o ponto de encontro dos prolongamentos de X_1T_1 e X_2T_2 pertence a ω .

1.1 Lema da estrela da morte

Problema 3 (Centroamericana/2010) Sejam Γ_1 e Γ_2 duas circunferências tangentes internamente entre si em A com centros O e O_1 e raios r e r_1 , respectivamente, com $r > r_1$. Seja B o ponto diametralmente oposto a A em Γ e seja C um ponto de Γ tal que BC é tangente a Γ_1 no ponto P. Seja A' o ponto médio de BC. Sabendo que $OA' \parallel AP$, calcule $\frac{r}{r_1}$.

Problema 4 $(Rom\hat{e}nia/TST - 2015)$ Seja r o raio da circunferência inscrita do $\triangle ABC$. Seja R_A o raio da circunferência tangente internamente a (ABC) no ponto A e tangente ao lado BC. Os raios R_B e R_C são definidos analogamente. Prove que

$$\frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C} \leqslant \frac{2}{r}$$

2 Outras soluções

Problema 5 (Belarus/2016) Seja P o ponto onde o A-exincírculo ω_A do triângulo ABC toca o lado \overline{BC} . Sejam I_1 e I_2 os centros do A-exincírculos em relação aos triângulos ABP e ACP, respectivamente. Prove que (I_1I_2P) é tangente a ω_A .

Solução: Se queremos (I_1I_2P) tangente a ω_A , então a reta ℓ tangente em comum a ambas para pelo ponto P, pois tal ponto está nas duas circunferências. Esse será nosso objetivo.

Sendo 2p o perímetro do $\triangle ABC$, é conhecido que:

$$p = AB + BP = AC + CP$$

Além disso, sendo F e F' os pontos onde o A-exincírculo toca o prolongamento de AP em relação a $\triangle ABP$ e $\triangle ACP$, respectivamente, e usando o resultado anterior, podemos concluir que:

$$AF = \frac{AB + BP + PA}{2} \qquad AF' = \frac{AC + CP + PA}{2}$$

$$\Rightarrow \frac{p + AP}{2} = AF = AF' \Rightarrow \boxed{F \equiv F'}$$

Consequentemente, também temos que:

$$I_1F \perp AP$$
 $I_2F \perp AP$
 $\Rightarrow I_1, I_2 \in F \text{ são colineares}$

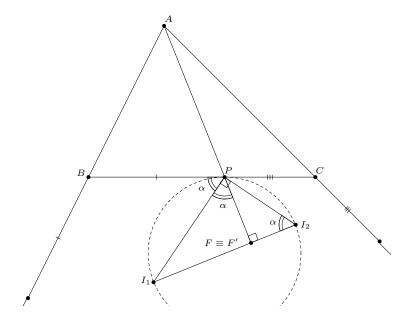
Por último, sendo $\alpha = \angle BPI_1$, podemos concluir que:

$$\angle I_1 PF = \alpha$$

$$\angle I_2 PF = \frac{180 - 2\alpha}{2} = 90 - \alpha$$

$$\triangle PI_2 F \Rightarrow \boxed{\angle PI_2 F = \alpha = \angle BPI_1}$$

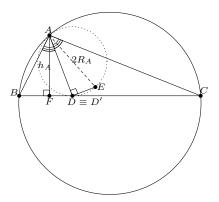
Da última conclusão, temos que: BP é tangente a (PI_1I_2) . Como BC é tangente a ω_a , então podemos concluir que (PI_1I_2) é tangente a ω_A , pois BC é reta tangente a ambas.



Problema 6 $(Rom\hat{e}nia/TST - 2015)$ Seja r o raio da circunferência inscrita do $\triangle ABC$. Seja R_A o raio da circunferência tangente internamente a (ABC) no ponto A e tangente ao lado BC. Os raios R_B e R_C são definidos analogamente. Prove que

$$\frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C} \leqslant \frac{2}{r}$$

Solução: Comecemos por um bom desenho.



Sejam a = BC, b = AC e c = AB os lados do $\triangle ABC$. Seja D o ponto onde a bissetriz interna de $\angle BAC$ encontra BC e seja D' o ponto onde a circunferência de raio R_A toca o lado BC.

Pelo lema da estrela da morte, temos que AD' é bissetriz interna de $\angle BAC$. Portanto, podemos concluir que $D \equiv D'$.

Seja E o antípoda (isto é, ponto diametralmente oposto) de A em relação à circunferência de raio R_A . Traçando a altura $h_A = AF$ em relação ao $\triangle ABC$, temos que:

Analogamente, podemos concluir que:

$$\frac{1}{R_B} \leqslant \frac{2}{h_B} \qquad \frac{1}{R_C} \leqslant \frac{2}{h_C}$$

Daí, sendo [ABC]a área do $\triangle ABC,$ temos que:

$$\begin{split} \frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C} & \leqslant & \frac{2}{h_A} + \frac{2}{h_B} + \frac{2}{h_C} \\ & \leqslant & \frac{a}{[ABC]} + \frac{b}{[ABC]} + \frac{c}{[ABC]} \\ & \leqslant & \frac{a+b+c}{[ABC]} \end{split}$$

Sendo 2p o perímetro do $\triangle ABC$, é conhecido que $[ABC] = p \cdot r$. Com isso, podemos concluir que:

$$\frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C} \leqslant \frac{a+b+c}{[ABC]} = \frac{2p}{p \cdot r} \Rightarrow \boxed{\frac{1}{R_A} + \frac{1}{R_B} + \frac{1}{R_C} \leqslant \frac{2}{r}}$$