X OLIMPÍADA INTERNACIONAL DE MATEMÁTICA PARA ESTUDANTES UNIVERSITÁRIOS

25 a 31 de Julho, Cluj - Napoca, Romênia

PRIMEIRO DIA

PROBLEMA 1

a) Seja $a_1, a_2, \dots, a_n, \dots$ uma sequência de números reais tais que $a_1 = 1$ e $a_{n+1} > \frac{3}{2a_n}, \forall n$.

Prove que a sequência $\frac{a_n}{\left(\frac{3}{2}\right)^{n-1}}$ tem um limite finito ou tende a infinito.

b) Prove que para todo $\alpha > 1$ existe uma seqüência $a_1, a_2, \dots, a_n, \dots$ com as mesmas propriedades, tal que $\lim_{n \to \infty} \frac{a_n}{\left(\frac{3}{2}\right)^{n-1}} = \alpha$.

PROBLEMA 2

Sejam $a_1, a_2, ..., a_{51}$ elementos não nulos de um corpo. Simultaneamente trocamos cada elemento pela soma dos outros 50. Desta forma a nova sequência $b_1, b_2, ..., b_{51}$ é uma permutação da anterior. Quais são os possíveis valores da característica do corpo?

PROBLEMA 3

Seja A uma matriz quadrada $n \times n$ tal que $3A^3 = A^2 + A + I$. Prove que $(A^k)_{k \in \mathbb{N}}$ converge a uma matriz idempotente B (i.e., a uma matriz B tal que $B^2 = B$).

PROBLEMA 4

Determine o conjunto de todos os pares (a, b) de inteiros positivos para os quais o conjunto dos inteiros positivos pode ser decomposto em dois conjuntos A e B tais que $a \cdot A = b \cdot B$.

PROBLEMA 5

Sejam $g:[0,1] \to \mathbb{R}$ uma função contínua e $f_n:(0,1] \to \mathbb{R}$ a seqüência de funções definida por

$$f_0(x) = g(x) \text{ e } f_{n+1}(x) = \frac{1}{x} \int_0^x f_n(t) dt, \ \forall x \in (0,1], n \ge 0.$$

Determine $\lim_{n\to\infty} f_n(x)$ para todo $x \in (0,1]$.

PROBLEMA 6

Seja $f(z) = a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0$ um polinômio com coeficientes reais. Prove que se as raízes de f estão no semi-plano esquerdo $\{z \in \mathbb{C} \mid \text{Re}(z) < 0\}$ então $a_k a_{k+3} < a_{k+1} a_{k+2}$ para todo k = 0, 1, ..., n-3.

SEGUNDO DIA

PROBLEMA 1

Sejam A e B matrizes reais $n \times n$ tais que AB + A + B = 0. Prove que AB = BA.

PROBLEMA 2

Calcule o seguinte limite: $\lim_{x\to 0^+} \int_x^{2x} \frac{sen^m t}{t^n} dt$ (*m*, *n* naturais dados).

PROBLEMA 3

Seja A um subconjunto fechado de \mathbb{R}^n e seja B o conjunto de todos os pontos b de \mathbb{R}^n tais que existe exatamente um ponto a_0 em A tal que $\left|a_0-b\right|=\inf_{a\in A}\left|a-b\right|$. Prove que B é denso em \mathbb{R}^n .

PROBLEMA 4

Encontre todos os inteiros positivos n para os quais existe uma família F de subconjuntos de três elementos de $S = \{1, 2, ..., n\}$ que satisfaz as seguintes condições:

- (i) Para quaisquer elementos distintos $a, b \in S$ existe exatamente um $A \in F$ tal que $a, b \in A$.
- (ii) Se a, b, c, x, y, z são tais que $\{a, b, x\}, \{a, c, y\}, \{b, c, z\} \in F$ então $\{x, y, z\} \in F$.

PROBLEMA 5

- a) Mostre que para toda função $f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{R}$ existe uma função $g: \mathbb{Q} \to \mathbb{R}$ tal que $f(x,y) \le g(x) + g(y) \forall x,y \in \mathbb{Q}$.
- b) Encontre uma função $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ para a qual não existe $g: \mathbb{R} \to \mathbb{R}$ tal que $f(x, y) \le g(x) + g(y) \ \forall x, y \in \mathbb{R}$.

PROBLEMA 6

Seja $a_0, a_1, ..., a_n, ...$ a sequência definida por $a_0 = 1$, $a_{n+1} = \frac{1}{n+1} \sum_{k=0}^{n} \frac{a_k}{n-k+2}$.

Calcule $\sum_{k=0}^{\infty} \frac{a_k}{2^k}$ (se existir).