XXVII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Primeira Fase – Nível Universitário

PROBLEMA 1

Seja $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3 + ax^2 + bx + c$, sendo $a, b \in c$ inteiros. Sabe-se que f(1) = f(-1) = 0.

As retas tangentes ao gráfico de f nos pontos A = (-1; 0) e B = (1; 0) cortam-se em C. Calcule a área do triângulo ABC, sabendo-se que tal área é inteira.

PROBLEMA 2

Calcule a integral:
$$\int_0^{\pi/4} \ln(1+tgx)dx$$

PROBLEMA 3

Determine o maior valor possível para o volume de um tetraedro inscrito no elipsóide de equação $\frac{x^2}{9} + \frac{y^2}{16} + \frac{z^2}{25} = 1.$

PROBLEMA 4

Sejam A e B matrizes reais quadradas de mesma dimensão tais que, para todo inteiro positivo k, $(A+B)^k = A^k + B^k$. Prove que se A é invertível então B é a matriz nula.

PROBLEMA 5

Determine todos os valores reais de α para os quais a matriz $A = (a_{ij})_{n \times n}$ definida por $a_{ij} = \cos((i-1) \cdot j\alpha)$, para $1 \le i, j \le n$, tem determinante nulo.

PROBLEMA 6

Prove que existem pelo menos 2005 potências 27-ésimas distintas (isto é, números da forma n^{27} , com n inteiro positivo), todas com exatamente 2005 algarismos, tais que qualquer uma pode ser obtida de qualquer outra a partir de uma permutação de seus algarismos.