36ª Olimpíada Brasileira de Matemática Nível Universitário — Primeira Fase

Problema 1 Turbo, o caracol, está participando de uma corrida. Nos últimos 1000 mm, Turbo, que está a 1 mm por hora, se motiva e passa a correr de modo que sua velocidade seja inversamente proporcional à distância que falta. Em quanto tempo Turbo percorre esses 1000 mm finais?

Obs.: Suponha que Turbo pode atingir velocidades arbitrariamente altas, mesmo que sejam maiores que a da luz.

Solução. Seja x(t) a distância que falta para Turbo terminar a corrida no instante t. Então x(0) = 1000, a velocidade de Turbo é 1000/x e obtemos a equação diferencial

$$\frac{dx}{dt} = -\frac{1000}{x} \implies x \, dx = -1000 \, dt \implies \frac{x^2}{2} \Big|_{x(0)}^x = -1000 \Big|_0^t$$

$$\iff x^2 - 1000^2 = -2000t \iff x = \sqrt{1000^2 - 2000t},$$

então x = 0 quando t = 500.

Pontuação. Obter uma equação diferencial que resolve o problema vale **4 pontos**, resolvê-la vale **6 pontos**. Pontuações parciais na resolução da diferencial podem ser consideradas.

Problema 2 Considere as matrizes 3×3 cujas entradas são inteiros entre 0 e 9 (inclusive). Determine o maior determinante possível de uma tal matriz.

Solução. Seja $A = (a_{ij})_{3\times 3}$ a matriz.

Como $\det(A)$ é linear em cada entrada, basta considerar $a_{ij} = 0$ ou $a_{ij} = 9$, de modo que A = 9B com $B = (b_{ij})_{3\times 3}$ e $b_{ij} \in \{0,1\}$ (3 pontos).

Desenvolvendo pela primeira coluna, o determinante de B é menor ou igual a 3 (+2 pontos). Mas para dar 3, devemos ter $b_{11} = b_{21} = b_{31} = 1$ e seus menores 2×2 teriam que ser todos 1. Então pelo b_{11} temos $b_{22} = b_{33} = 1$; pelo b_{31} vem $b_{12} = b_{23} = 1$. Mas aí o outro menor, do b_{21} , é $1 - b_{31}b_{32}$ que não vai ser -1 nunca. Então 3 não é possível e o determinante de B é no máximo 2 (Mostrar que $\det(B) = 3$ não é possível: +3 pontos).

O exemplo

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

mostra que det(B) = 2 é possível e portanto o máximo de det(A) é $2 \cdot 9^3 = 1458$. (Mostrar o exemplo: +2 pontos)

Problema 3 Determine todos os pares de inteiros positivos (n,r) para os quais pode existir uma festa com n participantes em que cada participante conhece exatamente r outros participantes.

Obs.: Conhecer é uma relação simétrica.

Solução. Considere n pontos ao longo de um círculo, vértices de um polígono regular, e o grafo de amizades. Se r=2k, construímos o seguinte exemplo: ligamos cada ponto com os k vizinhos mais próximos de cada lado; se r=2k+1 é ímpar e n é par, ligamos cada ponto com seus k vizinhos mais próximos e também com o vértice oposto.

Se ambos sao ímpares, não vai dar, pois a soma dos graus $n \cdot r$ deve ser o dobro do número de arestas no grafo.

Pontuação: Construir um exemplo para r par vale 4 pontos, construir um exemplo para npar vale 4 pontos, mostrar que não é possível para $n \in r$ ímpares vale 2 pontos.

Problema 4 Seja D_n o conjunto dos racionais p/q com p,q inteiros, $0 < q \le n$ e $0 \le p \le q$.

a) Prove que, para todo $n \geq 3$, dados $x, y \in D_n$ distintos, temos sempre

$$|\cos(\pi x) - \cos(\pi y)| > \pi^2/n^3$$
.

b) Prove que para todo $c > \pi^2$ e todo n_0 natural existem $n > n_0$ e $x, y \in D_n$ distintos tais que

$$|\cos(\pi x) - \cos(\pi y)| < c/n^3.$$

Solução. a) Podemos supor sem perda de generalidade que y > x. Temos 3 casos:

- i) x = 0: temos $|\cos(\pi x) \cos(\pi y)| = 1 \cos(\pi y) = 2\sin^2(\pi y)/2 > 4y^2 \ge 4/n^2 \ge 12/n^3 > 10$ $\pi^2/n^3, \forall n \geq 3 \text{ (pois sen}(\pi x) \geq 2x \text{ para } 0 \leq x \leq 1/2).$ $ii) \ y = 1: \text{ temos } |\cos(\pi x) - \cos(\pi y)| = |\cos(\pi (1-y)) - \cos(\pi (1-x))|, \text{ com } 0 \leq 1-y < x \leq 1,$
- e a desigualdade segue do caso anterior, pois 1-x, 1-y também pertencem a D_n .

[1 ponto para os casos i) e ii)]

iii) 0 < x < y < 1: pelo Teorema do Valor Médio, $|\cos(\pi x) - \cos(\pi y)| = \pi \operatorname{sen}(\pi c)|x - y|$ onde $1/n \le x < c < y \le 1 - 1/n$, donde $sen(\pi c) \ge sen(\pi/n)$; por outro lado, como $x, y \in D_n$, $|x-y| \ge 1/n(n-1)$, e portanto $|\cos(\pi x) - \cos(\pi y)| \ge \sin(\pi/n)/n(n-1)$. Basta agora provar que $\operatorname{sen}(\pi/n)/n(n-1) \ge \pi^2/n^3, \forall n \ge 3$. Isso equivale a $\operatorname{sen}(\pi/n) \ge \pi(n-1)/n^2, \forall n \ge 3$. Vamos mostrar que sen $(\pi t) \ge \pi (t-t^2)$ para $0 \le t \le 1/3$, e o resultado segue fazendo t=1/n. Como vale a igualdade para t = 0, a derivada de $sen(\pi t)$ é $\pi cos(\pi t)$ e a derivada de $\pi(t - t^2)$ é $\pi(1 - 2t)$, basta provar que $\pi \cos(\pi t) \ge \pi (1 - 2t)$, para $0 \le t \le 1/3$, mas temos

 $\pi\cos(\pi t) > \pi(1-2t) \iff \cos(\pi t) > 1-2t \iff 2\sin^2(\pi t/2) = 1-\cos(\pi t) < 2t \iff \sin^2(\pi t/2) < t$ e sen $^2(\pi t/2) \le (\pi t/2)^2 = \pi^2 t^2/4 \le t$ para $0 \le t \le 4/\pi^2$. Como $4/\pi^2 > 1/3$ a afirmação é verdadeira.

[5 pontos por concluir a solução do item a)]

b) É suficiente mostrar que

$$\lim_{n \to +\infty} n^3 (\cos(\pi/n) - \cos(\pi/(n-1))) = \pi^2.$$

Note que $|\cos(\pi/n) - \cos(\pi/(n-1))| = \pi \operatorname{sen}(\pi c_n)/n(n-1)$, para algum $c_n \in (1/n, 1/(n-1))$, pelo Teorema do Valor Médio; temos portanto

$$\lim_{n \to +\infty} n^3 (\cos(\pi/n) - \cos(\pi/(n-1))) = \lim_{n \to +\infty} n^3 \cdot \pi \operatorname{sen}(\pi c_n) / n(n-1) =$$

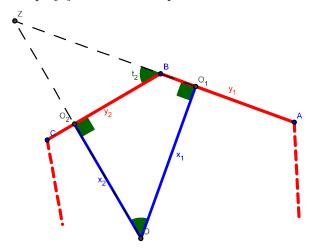
$$= \pi^2 \lim_{n \to +\infty} \frac{n}{n-1} \lim_{n \to +\infty} \frac{\operatorname{sen}(\pi c_n)}{\pi c_n} \lim_{n \to +\infty} (n \cdot c_n) = \pi^2.$$

[4 pontos por resolver o item b)]

Problema 5 Sejam $t_1, t_2, ..., t_n$ reais positivos tais que $t_1 + t_2 + ... + t_n = 2\pi$ e O um ponto fixo do plano. Considere a família de polígonos convexos de n lados contendo O em seu interior cujos ângulos externos sejam respectivamente $t_1, t_2, ..., t_n$. Sejam y_i o comprimento do i-ésimo lado, e x_i a distância de O ao i-ésimo lado.

- a) Mostre que o vetor $y=(y_1,y_2,...,y_n)$ depende linearmente do vetor $x=(x_1,x_2,...,x_n)$, isto é, existe uma matriz $A=(a_{ij})_{1\leq i,j\leq n}$ que só depende dos $t_i,1\leq i\leq n$ tal que $y_i=\sum_{j=1}^n a_{ij}x_j$, para $1\leq i\leq n$.
- b) Considere um segundo polígono desta mesma família, e defina x_i' e y_i' de maneira análoga. Mostre que $\sum_{i=1}^n x_i y_i' = \sum_{i=1}^n x_i' y_i$. Solução. a) Sejam O_1 e O_2 as projeções ortogonais de O sobre os lados AB (de comprimento

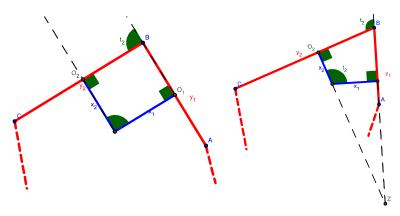
Solução. a) Sejam O_1 e O_2 as projeções ortogonais de O sobre os lados AB (de comprimento y_1) e BC (de comprimento y_2). Seja Z o ponto de encontro das retas OO_2 e AB. Suponha inicialmente que ambas as projeções estão nos respectivos lados:



Como o quadrilátero OO_1BO_2 tem dois ângulos de $\frac{\pi}{2}$, vem $\angle O_1OO_2 = \angle DBO_2 = t_2$. Do triângulo OO_1Z vem $ZO = x_1 \sec t_2$, portanto $ZO_2 = x_1 \sec t_2 - x_2$. Assim, do triângulo BO_2Z :

$$O_2B = (x_1 \sec t_2 - x_2) \cot t_2 = x_1 \csc t_2 - x_2 \cot t_2$$

Note que esta fórmula funciona mesmo que $t \ge \frac{\pi}{2}$, com raciocínios análogos:



Caso $t = \frac{\pi}{2}$. Temos $O_2B = x_1$.

Caso $t > \frac{\pi}{2}$.

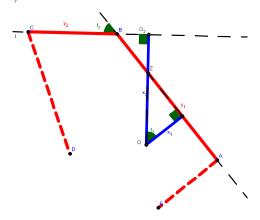
Analogamente,

$$O_2C = x_3 \csc t_3 - x_2 \cot t_3$$

Portanto

$$y_2 = BO_2 + O_2C = x_1 \csc t_2 - x_2 (\cot t_2 + \cot t_3) + x_3 \csc t_3$$

Enfim, se a projeção de O sobre a reta BC está fora do lado BC (digamos, s.p.d.g., à direita de B como na figura abaixo)



então a fórmula para O_2B passa a ter o sinal trocado

$$O_2B = (x_2 - x_1 \sec t_2) \cot t_2 = -x_1 \csc t_2 + x_2 \cot t_2$$

mas então

$$y_2 = CO_2 - BO_2 = x_1 \csc t_2 - x_2 (\cot t_2 + \cot t_3) + x_3 \csc t_3$$

volta a ser a fórmula encontrada anteriormente.

Variando o lado desejado, mostramos que

$$y_k = x_{k-1} \csc t_k - x_k (\cot t_k + \cot t_{k+1}) + x_{k+1} \csc t_{k+1}$$
para $k = 1, 2, ..., n$

onde índices são tomados mod n. Ou seja, $\vec{y} = A\vec{x}$ onde A é a matriz "cíclica tridiagonal":

$$A = \begin{pmatrix} -\cot t_1 - \cot t_2 & \csc t_2 & 0 & \cdots & 0 & \csc t_1 \\ \csc t_2 & -\cot t_2 - \cot t_3 & \csc t_3 & \cdots & 0 & 0 \\ 0 & \csc t_3 & -\cot t_3 - \cot t_4 & \cdots & 0 & 0 \\ 0 & 0 & \csc t_4 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -\cot t_{n-1} - \cot t_n & \csc t_n \\ \csc t_1 & 0 & 0 & \cdots & \csc t_n & -\cot t_1 \end{pmatrix}$$

b) **Primeira solução:** note que $\vec{y} = A\vec{x}$ e $\vec{y}_i' = A\vec{x}_i'$. Usando o produto interno canônico $\langle \vec{v}, \vec{w} \rangle = \sum_{i=1}^n v_i w_i$, temos

$$\sum x_i y_i' = \langle \vec{x}, \vec{y}' \rangle = \langle \vec{x}, A\vec{x}' \rangle = \langle A\vec{x}, \vec{x}' \rangle = \langle \vec{y}, \vec{x}' \rangle = \sum x_i' y_i$$

onde a igualdade central se justifica pois A é simétrica (vide item anterior).

Segunda solução: faça uma homotetia de razão k no polígono original para que ele fique completamente contido no interior do segundo (note que isto não afeta a igualdade que queremos

demonstrar, pois ambos os lados ficam multiplicados pela mesma razão k). Sendo $P = P_1 P_2 ... P_n$ o polígono interior e $Q = Q_1 Q_2 ... Q_n$ o exterior, suas áreas são

$$\begin{split} A\left(P\right) &= \sum A\left(OP_{i}P_{i+1}\right) = \sum \frac{x_{i}y_{i}}{2} \\ A\left(Q\right) &= \sum A\left(OQ_{i}Q_{i+1}\right) = \sum \frac{x'_{i}y'_{i}}{2} \end{split}$$

Agora, a área entre os polígonos pode ser dividida em trapézios T_i da forma $P_iP_{i+1}Q_{i+1}Q_i$, cujas áreas são

$$A(T_i) = \frac{y_i + y_i'}{2} \cdot (x_i' - x_i)$$

Portanto

$$A(Q) - A(P) = \sum \frac{(y_i + y_i')(x_i' - x_i)}{2} \Rightarrow$$

$$\Rightarrow \sum x_i' y_i' - \sum x_i y_i = \sum (y_i + y_i')(x_i' - x_i) \Rightarrow$$

$$\Rightarrow \sum x_i y_i' = \sum x_i' y_i$$

Pontuação:

a) TOTAL: 5 pontos

Demonstrar a fórmula para y_k em função de x_{k-1}, x_k e x_{k+1} em pelo menos um dos casos mais gerais (O_2 dentro **ou** fora de y_2 ; com ângulo externo agudo **ou** obtuso): **4 pontos.**

Considerar os outros casos gerais (O_2 fora ou dentro de y_2 ; **e também** ângulo externo obtuso ou agudo) e mostrar (mesmo que por simples analogia) que a fórmula ainda se mantém: 1 **ponto.**

O caso $t_i=\frac{\pi}{2}$ vale 0 pontos. Se o aluno considerar os casos gerais mas não mencionar este, ainda assim recebe a pontuação integral.

Observações: o enunciado não explicita se t_i é o ângulo entre y_{i-1} e y_i ou entre y_i e y_{i+1} . Assim, a seguinte matriz também está correta:

$$A = \begin{pmatrix} -\cot t_n - \cot t_1 & \csc t_1 & 0 & \cdots & 0 & \csc t_n \\ \csc t_1 & -\cot t_1 - \cot t_2 & \csc t_2 & \cdots & 0 & 0 \\ 0 & \csc t_2 & -\cot t_2 - \cot t_3 & \cdots & 0 & 0 \\ 0 & 0 & \csc t_3 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & -\cot t_{n-2} - \cot t_{n-1} & \csc t_{n-1} \\ \csc t_n & 0 & 0 & \cdots & \csc t_{n-1} & -\cot t_{n-1} - \cot t_2 \end{pmatrix}$$

b) TOTAL: 5 pontos

Na segunda solução: supor que um polígono é interno ao outro sem considerar porque esta hipótese não afeta o enunciado: -1 ponto.

Nota. Vê-se do contexto do problema que a "distância ao *i*-ésimo lado"tem que ser interpretada como "distância à sua reta suporte". Isto dito, se o aluno interpretar esta distância no sentido mais formal (distância de ponto a conjunto), o enunciado torna-se incorreto. Por este motivo, o aluno que apresentar contra-exemplos explícitos ganha pontuação integral (5 pontos para contra-exemplo do primeiro item, 5 pontos para contra-exemplo do segundo item).

Problema 6 Zé Pantera percorre um caminho em $\mathbb{N} = \{0, 1, 2, \dots\}$ guiado por um dado. Começa em 0 e a cada segundo joga um dado honesto, obtendo um número s entre 1 e 6; se está em x pula para x + s. Seja x_n a probabilidade de Zé Pantera estar em n em algum momento. Prove que existe $\lim_{n\to\infty} x_n$ e determine esse limite.

Solução. Temos $x_{n+6} = (x_{n+5} + x_{n+4} + x_{n+3} + x_{n+2} + x_{n+1} + x_n)/6$, $\forall n \ge -5$ (onde $x_0 = 1$ e convencionamos $x_n = 0$ para $-5 \le n \le -1$). Assim, a sequência (x_n) satisfaz uma recorrência linear cujo polinômio característico é $P(x) = x^6 - (x^5 + x^4 + x^3 + x^2 + x + 1)/6$. Temos P(1) = 0. Além disso, se $|\alpha| \ge 1$ e $P(\alpha) = 0$, definindo $\beta = 1/\alpha$, temos $|\beta| \le 1$ e $1 = (\beta + \beta^2 + \beta^3 + \beta^4 + \beta^5 + \beta^6)/6$. Como

 $\left| \frac{\beta + \beta^2 + \beta^3 + \beta^4 + \beta^5 + \beta^6}{6} \right| \le \frac{|\beta| + |\beta|^2 + |\beta|^3 + |\beta|^4 + |\beta|^5 + |\beta|^6}{6} \le 1,$

e vale a igualdade se e somente se $\beta=1$. Assim, temos necessariamente $\alpha=1/\beta=1$. Como $P(x)=(x-1)(x^5+\frac{5}{6}x^4+\frac{4}{6}x^3+\frac{3}{6}x^2+\frac{2}{6}x+\frac{1}{6})$, 1 é raiz simples de P(x), e logo as outras raízes de P(x) têm módulo estritamente menor que 1. Isso implica que (x_n) converge.

[3 pontos por provar a convergência de (x_n)]

Obs.: Alternativamente, podemos definir $y_n = (x_n, x_{n-1}, x_{n-2}, x_{n-3}, x_{n-4}, x_{n-5}) \in \mathbb{R}^6$. Temos que $y(n+1) = Ay(n), \forall n \geq 0$, para uma matriz estocástica A. Portanto (y_n) converge, e logo (x_n) também converge.

Vamos agora determinar $\lim x_n$. Como $P(x)=(x-1)(x^5+\frac{5}{6}x^4+\frac{4}{6}x^3+\frac{3}{6}x^2+\frac{2}{6}x+\frac{1}{6})$, temos que $z_n:=x_{n+5}+\frac{5}{6}x_{n+4}+\frac{4}{6}x_{n+3}+\frac{3}{6}x_{n+2}+\frac{2}{6}x_{n+1}+\frac{1}{6}x_n$ é constante (note que a igualdade $z_{n+1}=z_n$ é equivalente à recorrência $x_{n+6}=(x_{n+5}+x_{n+4}+x_{n+3}+x_{n+2}+x_{n+1}+x_n)/6)$. Assim, para todo $n\geq -5, \ z_n=x_0+\frac{5}{6}x_{-1}+\frac{4}{6}x_{-2}+\frac{3}{6}x_{-3}+\frac{2}{6}x_{-4}+\frac{1}{6}x_{-5}=1$. Por outro lado, se (x_n) converge a $L,\ z_n$ converge a $(1+\frac{5}{6}+\frac{4}{6}+\frac{3}{6}+\frac{2}{6}+\frac{1}{6})L=7L/2$, donde 7L/2=1 e portanto $\lim x_n=L=2/7$.

[7 pontos por determinar $\lim x_n$]

Obs.: Alternativamente, pela lei dos grandes números, com probabilidade total cada possível resultado $s \in \{1, 2, 3, 4, 5, 6\}$ do dado ocorre com frequência limite 1/6, e portanto, se P_n é a posição de Zé Pantera após n segundos, temos, com probabilidade total, $\lim P_n/n = (1+2+3+4+5+6)/6 = 7/2$. Assim, com probabilidade total, Zé Pantera passa por 2/7 dos inteiros positivos (assintoticamente), e logo, como (x_n) converge, temos $\lim x_n = 2/7$.