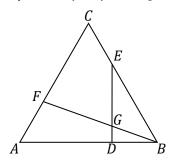
36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase – Nível 3 (Ensino Médio)

PARTE A (Cada problema vale 5 pontos)

01. No desenho abaixo, o triângulo ABC é equilátero e BD = CE = AF = AB/3. A razão EG/GD pode ser escrita na forma m/n, mdc(m,n) = 1. Quanto vale m + n?



- **02.** O *imparial* de n é igual ao produto de todos os naturais ímpares menores ou iguais a n. Quais são os três últimos algarismos do imparial de 2014?
- **03.** A sequência a_1, a_2, a_3, \dots satisfaz $a_1 = 1$ e $a_n = \sqrt{a_{n-1}^2 + n}$. Qual é o inteiro mais próximo de a_{2014} ?
- **04.** A *mediana* de um conjunto $\{a_1, a_2, ..., a_n\}$ com $a_1 < a_2 < \cdots < a_n$ é igual à media dos dois termos centrais $\frac{a_n + a_n}{2} + a_n$ se n é par e ao termo central $a_{n+1} = a_n$ se n é impar. Sendo $a_n = a_n$ a quantidade de subconjuntos de $\{1,2,3,...,2014\}$ com mediana igual a 2012, encontre o resto da divisão de $a_n = a_n$ por 2014.
- **05.** Uma caixa de madeira em forma de paralelepípedo retângulo possui dimensões $3 \times 4 \times 6$. Ela está sobre o chão com uma de suas faces completamente apoiada sobre o chão. Uma fonte de luz emite raios paralelos de luz formando 45° com o chão. Considerando apenas essa fonte de luz, qual a área da maior sombra possível da caixa no chão? Não inclua a base da caixa na sombra.
- **06.** Um conjunto é dito *completamente divisível* se para quaisquer elementos a < b temos que a divide b. Um conjunto de inteiros positivos A é completamente divisível e possui 2016 como um de seus elementos. Sabendo que todos os elementos de A são menores que 2 milhões, qual o máximo número de elementos que A pode ter?

36ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase – Nível 3 (Ensino Médio)

PARTE B (Cada problema vale 10 pontos)

PROBLEMA 1

Numa sala de aula, o professor fez uma votação para ver se adiava ou não a data da prova de Matemática. Um terço dos alunos foi contra o adiamento e o restante a favor. Vários alunos argumentaram e o professor fez nova votação, na qual 8 alunos mudaram de opinião, de modo que $\frac{5}{9}$ dos alunos passaram a ser contra o adiamento da prova. No máximo, quantos alunos participaram da votação?

PROBLEMA 2

Seja *ABCD* um quadrado de lado 4. O conjunto *S* de pontos no interior de *ABCD* tem a seguinte propriedade: todo círculo de raio 1 contido totalmente em *ABCD* contém, em sua borda ou em seu interior, pelo menos um ponto de *S*. Qual é a quantidade mínima de pontos em *S*?

PROBLEMA 3

Um círculo tangencia os lados do quadrilátero ABCD. Os pontos de tangência são R sobre AB, S sobre BC, T sobre CD e U sobre DA. Sabe-se que AU = 1, DU = 2, BS = 2 e CS = 4. Calcule o comprimento SU.