XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE – NÍVEL 3 (Ensino Médio) PRIMEIRO DIA

PROBLEMA 1

Quando duas amebas vermelhas se juntam, se transformam em uma única ameba azul; quando uma ameba vermelha se junta com uma ameba azul, as duas se transformam em três amebas vermelhas; quando duas amebas azuis se juntam, elas se transformam em quatro amebas vermelhas. Um tubo de ensaio tem inicialmente *a* amebas azuis e *v* amebas vermelhas.

Determine, em função de a e v, todas as quantidades de amebas possíveis no tubo de ensaio e, para cada quantidade de amebas, as possibilidades de quantidades de amebas de cada cor.

PROBLEMA 2

Dado um triângulo ABC, o *exincentro* relativo ao vértice A é o ponto de interseção das bissetrizes externas de $\angle B$ e $\angle C$. Sejam I_A , I_B e I_C os exincentros do triângulo escaleno ABC relativos a A, B e C, respectivamente, e X, Y e Z os pontos médios de I_BI_C , I_CI_A e I_AI_B , respectivamente. O incírculo do triângulo ABC toca os lados BC, CA e AB nos pontos D, E e F, respectivamente. Prove que as retas DX, EY e FZ têm um ponto em comum pertencente à reta IO, sendo I e O o incentro e o circuncentro do triângulo ABC, respectivamente.

PROBLEMA 3

Qual é o menor natural n para o qual existe k natural de modo que os 2012 últimos dígitos na representação decimal de n^k são iguais a 1?

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA TERCEIRA FASE – NÍVEL 3 (Ensino Médio) SEGUNDO DIA

PROBLEMA 4

Determine se existem inteiros positivos n, a_1 , a_2 , ..., a_{2012} , todos maiores ou iguais a 2, tais que

$$n^2 = a_1^2 + a_2^3 + a_3^5 + \dots + a_i^{p_i} + \dots + a_{2012}^{p_{2012}},$$

em que p_i é o *i*-ésimo primo (ou seja, $p_1 = 2$, $p_2 = 3$, $p_3 = 5$, ...).

PROBLEMA 5

De quantas maneiras podemos pintar as casas de um tabuleiro $n \times n$ com 4 cores de modo que casas com um lado em comum não tenham a mesma cor e em cada quadrado 2×2 formado por quatro casas em linhas e colunas consecutivas apareçam as quatro cores?

PROBLEMA 6

Encontre todas as funções sobrejetoras f dos reais positivos nos reais positivos tais que

$$2x \cdot f(f(x)) = (f(f(x)) + x) \cdot f(x)$$

para todo x real positivo.

Obs.: uma função f de A em B é sobrejetora quando a imagem de f é B, ou seja, para todo $y \in B$ existe $x \in A$ tal que f(x) = y.