XIX Semana Olímpica de Matemática Nível U

Alguns Teoremas Básicos de Grupos e Suas Aplicações Samuel Feitosa

O projeto da XIX Semana Olímpica de Matemática foi patrocinado por:

Semana Olímpica 2016 Alguns Teoremas Básicos de Grupos e Suas Aplicações Nível U

Samuel Feitosa

1 Conceitos Fundamentais

Exercício 1. (Putnam 1989) Seja S um conjunto não vazio com uma operação associativa que possui lei de cancelamento à esquerda e à direita, i.e., xy = xz implica y = z e yx = zx implica y = z). Suponha que para todo $a \in S$ o conjunto $\{a^n : n = 1, 2, 3, \ldots\}$ é finito. É verdade que S é um grupo?

Exercício 2. (IMC 2003) Encontre todos os inteiros n para os quais existe uma família \mathcal{F} de subconjuntos de três elementos de $S = \{1, 2, ..., n\}$ satisfazendo as seguintes condições:

- i) para quaisquer dois elementos distintos $a, b \in S$, existe exatamente um elemento $A \in \mathcal{F}$ contendo a e b.
- ii) e a,b,c,x,y,z são elementos em S tais que se $\{a,b,x\},\{a,c,y\},\{b,c,z\}\in\mathcal{F}$, então $\{x,y,z\}\in\mathcal{F}$

Dica: Use as condições anteriores para definir uma estrutura de grupo abeliano sobre o conjunto $S \cup \{0\}$ de modo que todos os seus elementos possuam ordem 2. Conclua daí que $n = 2^m - 1$.

Exercício 3. Seja *G* um grupo finito e sejam *H* e *K* subgrupos de *G*.

- 1. Mostre que $|\langle H, K \rangle| : K| \ge |H : H \cap K|$
- 2. Mostre que se $|H:H\cap K|>\frac{1}{2}|G:K|$, então $\langle H,K\rangle=G$

Exercício 4. Seja G um grupo finito e sejam H e K subgrupos de G com mdc(|G:H|,|G:K|) = 1. Então $|G:H\cap K| = |G:H||G:K|$ e G=HK.

Exercício 5. (Romênia 2002) Seja G um grupo finito com n elementos. Suponha que existam dois elementos de ordens p e q, ambos maiores ou iguais a 2 e primos entre si, de modo que $p + q \ge n - 1$. Encontre o valor de n.

Exercício 6. (Putnam 1985) Seja G um conjunto finito de matrizes $n \times n$ de coeficientes reais $\{M_i\}$, $1 \le i \le r$, que forma um grupo sobre a multiplicação matricial. Suponha que $\sum_{i=1}^r tr(M_i) = 0$, onde tr(A) denota o traço da matriz A. Prove que $\sum_{i=1}^r M_i$ é a matriz nula.

Exercício 7. Sejam G um grupo, G' seu subgrupo dos comutadores e N um subgrupo normal de G. Suponha que N é cíclico. Prove que gn = ng para todo $g \in G'$ e todo $n \in N$.

Exercício 9. (IMC 2005) Dado um grupo G, denote por G(m) o subgrupo gerado pelas potências m-ésimas dos elementos de G. Se G(m) e G(n) são comutativos, prove que G(mdc(m,n)) também é comutativo.

Exercício 10. (IMC 2012) Seja $c \ge 1$ um número real. Seja G um grupo abeliano e seja $A \subset G$ um conjunto finito satisfazendo $|A + A| \le c|A|$, onde $X + Y = \{x + y | x \in X, y \in Y\}$ e |Z| denota a cardinalidade de Z. Prove que

$$|\underbrace{A+A+\ldots+A}_{k \text{ vezes}}| \le c^k |A|$$

para todo inteiro positivo k.

Exercício 11. Dizemos que um grupo G = (G, *) tem raiz se existe um grupo $H = (H, \cdot)$ de tal sorte que G é isomorfo a $H \times H$. Mostre que (Q, +) não possui raiz. O grupo $(\mathbb{R}, +)$ admite raiz?

Dica: Para a última pergunta, tente ver a possível raíz como um subespaço vetorial de \mathbb{R} sobre \mathbb{Q} . Como construir uma base para esse espaço vetorial?

Exercício 12. (Putnam 1990) Seja G um grupo finito de ordem n gerado por a e b. Prove ou disprove que existe uma sequência

$$g_1, g_2, g_3, \dots, g_{2n}$$

tal que

- a) todo elemento de G ocorre exatamente duas vezes e
- b) g_{i+1} é igual a $g_i a$ ou $g_i b$, para i = 1, 2, ..., 2n.(Interprete g_{2n+1} como g_1 .)

Exercício 13. Seja G um grupo finito com identidade e. Suponha que para quaisquer a e b em G, distintos de e, existe um automorfismo σ de G tal que $\sigma(a) = b$. Prove que G é abeliano.

Exercício 14. Seja *G* um grupo de ordem 10 que possui um subgrupo normal de ordem 2. Mostre que *G* é abeliano.

Exercício 15. Suponha que o grupo *G* possui um subgrupo não trivial *H* que está contido em todo subgrupo não trivial de *G*. Prove que *H* está contido no centro de *G*.

Exercício 16. Seja G um grupo e H e K subgrupos tais que H tem índice finito em G. Prove que $K \cap H$ tem índice finito em K.

Exercício 17. (IMC 2001) Sejam r, s, t inteiros positivos relativamente primos dois a dois. Se a e B são elementos de um grupo comutativo com unidade e e $a^r = b^s = (ab)^t = e$, prove que a = b = e.

Exercício 18. (Revista Matemáttica Universitária n06) Diremos que uma matriz $n \times n$ é positiva se suas entradas são reais não negativos. Seja G um grupo de matrizes positivas cujo elemento neutro é a matriz identidade. Se as normas das matrizes em G são limitadas, é verdade que G é finito?

2 Grupos de Permutações e Ações

Exercício 19. (IMC 1998) Prove que as seguintes proposições se verificam para n=3 e n=5. Além disso, mostre que elas não se verificam para n=4. "Para qualquer permutação π_1 de $\{1,2,\ldots,n\}$ diferente da identidade existe uma permutação π_2 tal que qualquer permutação π pode ser obtida de π_1 e π_2 usando-se apenas composições.

Exercício 20. (IMC 2010) Denote por S_n o grupo de permutações da sequência $(1,2,\ldots,n)$. Suponha que G é um subgrupo de S_n tal que para todo $\pi \in G \setminus \{e\}$ existe um único $k \in \{1,2,\ldots,n\}$ para o qual $\pi(k) = k$ (Aqui e é o elemento unidade no grupo S_n). Mostre que este k é o mesmo para todo elemento $\pi \in g \setminus \{e\}$.

Exercício 21. (IMC 2012) Dado um inteiro n > 1, seja S_n o grupo de permutações dos números $1, 2, \ldots, n$. Dois jogadores A e B disputam o jogo a seguir. Em turnos alternados, cada um escolhe um elemento do grupo S_n sendo proibido escolher um elemento que já tenha sido previamente escolhido. O jogo termina quando os elementos selecinados geram o grupo S_n . O jogador que fize ro último movimento perde o jogo. Se o primeiro a jogar é A, qual dos dois possui uma estratégia vencedora?

Exercício 22. Sejam G um grupo e N um subgrupo normal de G com $N \neq G$. Suponha que não existe um subgrupo H de G satisfazendo $N \subset H \subset G$ e $N \neq H \neq G$. Prove que o índice de N em G é finito e igual a um número primo.

Exercício 23. Prove que S_n , o grupo das permutações de $\{1,2,\ldots,n\}$, é isomorfo a um subgrupo de grupo A_{n+2} , o subgrupo alternado de S_{n+2} .

Exercício 24. Seja G um grupo possuindo um subgrupo A de índice finito. Prove que existe um subgrupo normal N de G contido em A tal que N é de índice finito em G.

Dica: Considere um homomorfismo envolvendo o grupo de permutações das classes laterais de A em G.

3 Os Teoremas de Sylow

Exercício 25. Mostre que todo grupo de ordem par possui um elemento de ordem 2.

Exercício 26. Prove que o subgrupo $G = \mathbb{Q}/\mathbb{Z}$ não possui subgrupo próprio de índice finito.

Dica: Use que se p é um primo dividindo a ordem de um grupo, então existe um elemento de ordem p.

Exercício 27. Seja G um grupo finito de ordem n com a propriedade de que para todo divisor d de n existe no máximo um subgrupo em G de ordem d. Mostre que G é cíclico.

Exercício 28. Prove que se *G* é um grupo que não contém subgrupos de índice 2, então qualquer subgrupo de índice 3 é normal.

Exercício 29. Seja G um grupo de ordem $2^2 \cdot 3^n$, com $n \ge 1$. Mostre que G possui um subgrupo normal de ordem 3^n ou 3^{n-1} .

4 Alguns Teoremas de Classificação

Exercício 30. Sejam a e b dois elementos de um grupo tais que $a^5 = e$, $aba^{-1} = b^2$. Encontre $\mathcal{O}(b)$.

Exercício 31. (Romênia 1996) Seja G um grupo com exatamente dois elementos (diferentes da unidade) que comutam. Mostre que G é isomorfo a \mathbb{Z}_3 ou S_3 .

Exercício 32. (Romênia 1998)

a) Seja p um número primo e

$$G_p = \bigcup_{n \in \mathbb{N}} \{ z \in \mathcal{C} | z^{p^n} = 1 \}.$$

Mostre que G_p é um subgrupo do grupo multiplicativo C^* .

b) Seja H um subgrupo finito de (C^*, \cdot) . Prove que todo sugrupo de H (diferente de H) é finito se, e somente se, existe um número primo p tal que $H = G_p$.

Exercício 33. (IMC 1996) Seja G um subgrupo de $GL_2(\mathbb{R})$, gerado por A e B, onde

$$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array} \right], \ B = \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right]$$

Seja H o subconjunto das matrizes $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ de G com $a_{11}=a_{22}=1$.

- a) Mostre que *H* é um subgrupo abeliano de *G*.
- b) Mostre que *H* não é finitamente gerado.

Exercício 34. Sejam a e b dois elementos de um grupo tais que $aba = ba^2b$, $a^3 = e$ e $b^{2n-1} = e$ para algum inteiro positivo n. Prove que b = e.

 $^{^{1}}e$ denota a identidade do grupo.

Respostas e Soluções.