XIX Semana Olímpica de Matemática Nível 3

Polinômios Ciclotômicos e Congruência Módulo p Samuel Feitosa

O projeto da XIX Semana Olímpica de Matemática foi patrocinado por:

Semana Olímpica 2016 Polinômios Ciclotômicos e congruências módulo p. Nível 3

Samuel Feitosa

1 Ordens e Raízes Primitivas

Definição 1 O menor inteiro positivo k para o qual $a^k \equiv 1 \pmod{m}$, onde mdc(a, m) = 1, é chamado *ordem de a módulo* m e será denotado por $ord_m a$.

Teorema 1 Se $a \notin um$ inteiro relativamente primo com m, então $a^n \equiv 1 \pmod{m}$ se, e somente se, $ord_m a \mid n$. Ademais, $a_0^n \equiv a_1^n \pmod{m}$ se , e somente se, $n_0 \equiv n_1 \pmod{ord_m a}$

Demonstração. Sejam $b = ord_m a$ e n = qb + r com $0 \le r < b$. Como $a^b \equiv 1 \pmod{m}$,

$$a^n \equiv 1 \pmod{m} \Leftrightarrow a^{qb+r} \equiv 1 \pmod{m}$$

 $\Leftrightarrow a^r \equiv 1 \pmod{m}$

Como $0 \le r < b$, devemos ter r = 0. Usando que mdc(a, m) = 1 e supondo que $n_0 > n_1$,

$$a_0^n \equiv a_1^n \pmod{m} \Leftrightarrow a^{n_0 - n_1} \equiv 1 \pmod{m}$$

 $\Leftrightarrow n_0 - n_1 \equiv 0 \pmod{b}$

Corolário 1 Se mdc(a, m) = 1, $ord_m a | \phi(m)$

Demonstração. Pelo teorema de Euler, $a^{\phi(m)} \equiv 1 \pmod{m}$. O resultado segue do teorema anterior.

Exercício 1. (Putnam 1972) Prove que não existe inteiro positivo n > 1 tal que $n \mid 2^n - 1$.

Exercício 2. (Leningrado 1990) Prove que para todos os inteiros a > 1 e n, $n | \phi(a^n - 1)$.

Exercício 3. Mostre que

- a) $ord_{3^n}2 = 2 \cdot 3^{n-1}$
- b) Se $2^m \equiv -1 \pmod{3^n}$, então $\Rightarrow 3^{n-1} \mid m$.

Exercício 4. (Bulgária 1997) Encontre todos os números inteiros $m, n \ge 2$ tais que

$$\frac{1+m^{3^n}+m^{2\cdot 3^n}}{n}$$

é um inteiro

Exercício 5. Prove que que se p é primo, então $p^p - 1$ tem um fator primo congruente a 1 módulo p

Exercício 6. Se $ord_a m = h, ord_m b = k$ e mdc(h, k) = 1 mostre que $ord_m ab = hk$.

Exercício 7. Prove que se a, b são números naturais tais que a > b, n > 1, então cada divisor primo do número $a^n - b^n$ é ou da forma nk + 1, onde k é um inteiro, ou um divisor de um número $a^{n_1} - b^{n_1}$, onde $n_1 \mid n \in n_1 < n$.

Exercício 8. Prove que se a, b são números naturais tais que a > b, n > 1, então cada divisor primo do número $a^n + b^n$ é ou da forma 2nk + 1, onde k é um inteiro, ou um divisor de um número $a^{n_1} + b^{n_1}$, onde n_1 é o quociente obtido por dividir o número n por um número ímpar mairo que 1.

Exercício 9. Seja p um primo que não divide 10, e seja n um inteiro, 0 < n < p. Seja d a ordem de 10 módulo p.

- 1. Mostre que o comprimento do período da representação decimal de n/p é d.
- 2. Prove que que se d é par, então o período da representação decimal de n/p pode ser dividido em duas partes cuja soma é $10^{d/2} 1$. Por exmeplo, 1/7 = 0, $\overline{142857}$, então d = 6, e $142 + 857 = 999 = 10^3 1$.

3. Se
$$ord_m a = h \Rightarrow ord_m a^k = \frac{h}{mdc(h,k)}$$

Exercício 10. Se p é um primo maior que 3, então qualquer divisor maior que 1 do número $\frac{2^p+1}{3}$ é da forma 2kp+1, onde k é um número natural.

Teorema 2 Se p é um primo maior que 2, então qualquer número natural que divida o número $2^p - 1$ é da forma 2kp + 1, onde k é um inteiro.

Exercício 11. (Bulgária 1995) Encontre todos os primos p e q tais que o número $2^p + 2^q$ seja divisível por pq.

Exercício 12. Mostre que se k > 1 então $2^{k-1} \not\equiv -1 \pmod{k}$

Exercício 13. Mostre que se $3 \le d \le 2^{n-1}$, então $d \nmid (a^{2^n} + 1)$ para qualquer inteiro positivo a.

Exercício 14. (Eureka) Prove que se p é um primo da forma 4k + 3, então 2p + 1 também é primo se e somente se 2p + 1 divide $2^p - 1$.

Exercício 15. Prove que todos os divisores dos números de Fermat $2^{2^n} + 1$, n > 1, são da forma $2^{n+2}k + 1$.

Exercício 16. (IMO 1990) Encontre todos os inteiros positivos n > 1 tais que

$$\frac{2^n+1}{n^2}$$

é um inteiro.

Exercício 17. (Teste Cone Sul 2002) Encontre o período na representação decimal de $\frac{1}{32002}$.

Exercício 18. (Teste de Seleção do Irã para a IMO) Seja a um natural fixo. Mostre que o conjunto dos divisores primos de $2^{2^n} + a$, para $n \in \mathbb{N}$, é infinito.

Exercício 19. (Colômbia 2009) Encontre todas as triplas de inteiros positivos (a, b, n) que satisfazem a equação:

$$a^b = 1 + b + \ldots + b^n.$$

Teorema 3 (Euler) Um inteiro a satisfazendo mdc(a, p) = 1 é o resíduo de uma potência n-ésima nódulo p se e somente se vale a relação:

$$a^{\frac{p-1}{d}} \equiv 1 \pmod{p} \text{ com } d = mdc(p-1,n).$$

Exercício 20. (IMO 2003) Seja p um número primo. Demonstre que existe um número primo q tal que, para todo inteiro n, o número $n^p - p$ não é divisível por q.

Exercício 21. (Olimpiada Indiana) Seja p um primo ímpar e seja r um natural ímpar. Mostre que rp + 1 não divide $p^p - 1$.

Exercício 22. Mostre que para quaisquer inteiros positivos ímpares a e b

$$mdc(2^{a} + 1, 2^{b} + 1) = 2^{mdc(a,b)} + 1$$

Exercício 23. (Teste IMO 2003) Seja n um inteiro positivo, e sejam p_1, p_2, \ldots, p_n , primos distintos maiores que 3. Prove que $2^{p_1p_2...p_n} + 1$ tem pelo menos 4^n divisores.

Exercício 24. Ache todos os inteiros positivos n tais que vale $a^{n+1} \equiv a \pmod{n}$ para todo a inteiro.

Exercício 25. Mostre que se k > 1 então $2^{k-1} \not\equiv -1 \pmod k$

Exercício 26. Prove que todos os divisores dos números de Fermat $2^{2^n} + 1$, n > 1, são da forma $2^{n+2}k + 1$.

Exercício 27. (Putnam 1972) Prove que não existe um inteiro n > 1 tal que $n|2^n - 1$.

Exercício 28. (IMO 1990) Encontre todos os inteiros positivos n > 1 tais que

$$\frac{2^{n}+1}{n^{2}}$$

é um inteiro.

Exercício 29. (Proposto por Paul Erdos para a American Mathematical Monthly) Seja p um número primo maior que 3. Se $n = \frac{2^{2p} - 1}{3}$, mostre que $2^n - 2$ é divisível por n.

2 Polinômios Ciclotômicos

Exercício 30. (IMO 2003 - Adaptado) Seja p um número primo. Demonstre que existem **infinitos** primos q tal que, para todo inteiro n, o número $n^p - p$ não é divisível por q.

Exercício 31. (TST - China - 2004) Determine todos os inteiros positivos m satisfazendo a seguinte propriedade: existe um primo q_m tal que $n^m - m$ não é divisível por q_m para qualquer inteiro n.

Exercício 32. (Propriedades dos polinômios ciclotômicos)

1.
$$\Phi_n(X) = \prod_{d|n} (X^{\frac{n}{d}} - 1)^{\mu(d)}$$
.

2.
$$\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X^{p-1} + \dots + X^{p-1} + \dots + X^{p-1}$$

3. Se
$$n = p_1^{c_1} p_2^{c_2} \cdots p_k^{c_k}$$
, então

$$\Phi_n(X) = \Phi_{p_1 p_2 \cdots p_k} (X^{p_1^{c_1 - 1} p_2^{c_2 - 1} \cdots p_k^{c_k - 1}}).$$

- 4. Se n > 1 é impar, então $\Phi_{2n}(X) = \Phi_n(-X)$.
- 5. Se p é um primo que não divide n, então

$$\Phi_{pn}(X) = \frac{\Phi_n(X^p)}{\Phi_n(X)},$$

caso contrário, se $p \mid n$, $\Phi_{pn}(X) = \Phi_n(X^p)$.

Exercício 33. Seja n um inteiro positivo e x um inteiro qualquer. Mostre que todo divisor primo p de $\Phi_n(X)$ ou satisfaz $p \equiv 1 \pmod{n}$ ou $p \mid n$.

Teorema 4 Seja p um número primo. Então para todos os inteiros positivos n e a tais que mdc(n,p)=1 temos $p\mid \Phi_n(a)$ se, e somente se, $ord_p(a)=n$.

Exercício 34. Seja p um número primo e x um inteiro qualquer. Então todo divisor primo q de $1 + x + \cdots + x^{p-1}$ ou satisfaz $q \equiv 1 \pmod{p}$ ou p = q.

Exercício 35. Sejam a e b inteiros positivos. Suponha que x é um inteiro e que $mdc(\Phi_a(X), \Phi_b(X)) > 1$. Então $\frac{a}{b} = p^k$ para algum número primo p e algum inteiro k.

Exercício 36. Encontre todas as soluções inteiras da equação

$$\frac{x^7 - 1}{x - 1} = y^5 - 1$$

Exercício 37. Mostre que, dado n, existem infinitos primos p da forma nk + 1.

Exercício 38. (IMC 2010) Suponha que para uma função $f: \mathbb{R} \to \mathbb{R}$ e números reais a < b tenhamos f(x) = 0 para todo $x \in (a,b)$. Prove que f(x) = 0 para todo $x \in \mathbb{R}$ se

$$\sum_{k=0}^{p-1} f\left(y + \frac{k}{p}\right) = 0$$

para todo número primo p e todo número real y.

Exercício 39. (IMC 2011) Seja p um número primo. Dizemos que um inteiro positivo n é interessante se

$$x^{n} - 1 = (x^{p} - x + 1)f(x) + pg(x)$$

para polinômios f e g com coeficientes inteiros.

- a) Prove que o número $p^p 1$ é interessante.
- b) Para quais p o número $p^p 1$ é o menor número interessante?

Exercício 40. Seja n um inteiro positivo. Prove que o número $2^{2^n} + 2^{2^{n-1}} + 1$ pode ser expresso como o produto de não menos que n fatores primos (não necessariamente distintos).

Respostas e Soluções.

- **1.** Suponha, por absurdo, que existe um inteiro positivo n > 1 com essa propriedade e que k é o menor dentre eles. Se $d = ord_k 2$, então $d \mid k$. Como $2^d \equiv 1 \pmod{k}$, temos $2^d \equiv 1 \pmod{d}$. Em virtude da minimalidade de k, temos d = 1 ou d = k. No primeiro caso, teríamos k = 1 produzindo uma contradição. No segundo caso, em decorrência do teorema anterior, $k \mid \phi(k)$. Entretanto, se k > 1, $\phi(k) \le k 1$ e obtemos assim um absurdo.
- **2.** Se $k = ord_{a^n-1}a$, como $a^n \equiv 1 \pmod{a^n-1}$, temos $k \mid n$ e consequentemente $k \leq n$. Não podemos ter k < n porque $a^n 1 \mid a^k 1 \Rightarrow a^n 1 \leq a^k 1$. Assim, k = n e usando o teorema anterior podemos concluir que $k \mid \phi(a^n 1)$.
- 3. Provaremos por indução que $2^{3^k} + 1 = 3^{k+1}m_k$ com $3 \nmid m_k$. Suponha que a afirmação vale para k. Provemos para k + 1:

$$2^{3^{k+1}} = (3^{k+1}m_k - 1)^3$$

$$= 3^{3k+3}m_k^3 - 3^{2k+3}m_k^2 + 3^{k+2}m_k - 1$$

$$= 3^{k+2}(3^{2k+1}m_k^3 - 3^{k+1} + m_k) - 1$$

$$= 3^{k+2}m_{k+1} - 1$$

Claramente $3 \nmid m_{k+1}$. Voltemos ao problema. Seja $b = ord_{3^n}2$, então $b \mid \phi(3^n) = 2 \cdot 3^{n-1}$. Temos duas possibilidades: ou $b = 2 \cdot 3^j$ ou $b = 3^j$. Como $2^{3^{n-1}} \equiv -1 \pmod{3^n}$ e $3^j \mid 3^{n-1}$ se $j \leq n-1$, devemos ter $b = 2 \cdot 3^j$. Assim, $(2^{3^j} - 1)(2^{3^j} + 1) \equiv 1 \pmod{3^n}$. Usando que $2^{3^j} - 1 \equiv 1 \pmod{3}$, temos $2^{3^j} \equiv -1 \pmod{3^n}$. Novamente pelo lema provado no início, $3^j \geq 3^{n-1}$ e assim $b = 2 \cdot 3^{n-1}$. Para o item b), de $2^m \equiv -1 \pmod{3^n}$, podemos concluir que $2^{2m} \equiv 1 \pmod{3^n}$. Daí, $2 \cdot 3^{n-1} \mid 2m$ e o resultado segue.

- 4. Claramente n é ímpar, mdc(m,n)=1 e n>2. Se n=3, como mdc(m,n)=1 devemos ter que $m\equiv 1\pmod 3$ pois caso contrário $1+m^{3^n}+m^{2\cdot 3^n}\equiv 1-1+1\equiv 1\pmod 3$. É fácil ver que todo par (m,n)=(3k+1,3) é solução. Suponha agora n>3 e seja $k=ord_nm$. Se $n>3\Rightarrow m^{3^n}\not\equiv 1\pmod n$. Como $1+m^{3^n}+m^{2\cdot 3^n}=\frac{m^{3^{n+1}}-1}{m^{3^n}-1}$ segue que $n\mid m^{3^{n+1}}-1\Rightarrow k\mid 3^{n+1}$. Logo, $k=3^{n+1}$. Pelo teorema de Euler, $m^{\phi(n)}\equiv 1\pmod n$ então $k\le \phi(n)$ e $3^{n+1}\le \phi(n)\le n-1$, uma contradição.
- 5. Seja q um primo que divide $\frac{p^p-1}{p-1}$. Como $q\mid p^p-1$ segue que $ord_qp\mid p$. Se $ord_qp=1$ então $q\mid p^p-1$ e $0\equiv p^{p-1}+p^{p-2}+\ldots p+1\equiv 1+1+\ldots+1+1\equiv p\pmod q$. Mas isso é um absurdo pois $p\neq q$. Logo $ord_qp=p$ e obtemos $p\mid \phi(q)=q-1$. Daí, todos os divisores primos de $\frac{p^p-1}{p-1}$ são congruentes a 1 módulo p.