Olimpíada Brasileira de Matemática

X semana olímpica – 21 a 28 de janeiro de 2007

Eduardo Poço

Desigualdades – Nível II

Desigualdade do Rearranjo: sendo $a_1 \le a_2 \le ... \le a_n$, $b_1 \le b_2 \le ... \le b_n$ reais e a seqüência (x_i) uma permutação de (b_i) :

$$a_1b_n + a_2b_{n-1} + \dots + a_nb_1 \le a_1x_1 + a_2x_2 + \dots + a_nx_n \le a_1b_1 + a_2b_2 + \dots + a_nb_n$$

Desigualdade de Cauchy-Schwarz: sendo $a_1, a_2, ..., a_n$ e $b_1, b_2, ..., b_n$ números reais, temos:

$$(a_1^2 + a_2^2 + ...a_n^2)(b_1^2 + b_2^2 + ...b_n^2) \ge (a_1b_1 + a_2b_2 + ... + a_nb_n)^2$$

$$Igualdade \iff a_k = Cb_k, \ k = 1, 2, ..., n$$

Generalizando: sendo $x_{i,j} \ge 0$, $1 \le i \le n$ e $1 \le j \le m$:

$$\prod_{j=1}^{m} \sum_{i=1}^{n} x_{i,j}^{m} \ge \left(\sum_{i=1}^{n} \prod_{j=1}^{m} x_{i,j} \right)^{m}$$

Desigualdade de Jensen: sendo $f:S\subset R\to R$, com S um intervalo e

$$\frac{f(a)+f(b)}{2} \geq f\!\left(\frac{a+b}{2}\right) \text{(função convexa) para } \ \forall a,b \in S \text{ , então para }$$

 $a_1, a_2, ..., a_n \in S$, temos:

$$\frac{f(a_1) + f(a_2) + \dots + f(a_n)}{n} \ge f\left(\frac{a_1 + a_2 + \dots + a_n}{n}\right)$$

Vale também o análogo para funções côncavas, com troca de maior por menor. Podemos também usar pesos.

Generalizando: sendo $f: S \subset \mathbb{R}^m \to \mathbb{R}$, S convexo, podemos considerar

$$\frac{f(a)+f(b)}{2} \ge f\left(\frac{a+b}{2}\right)$$
, para $\forall a,b \in S$, com a e b m -uplas ordenadas, e

teremos o mesmo resultado, considerando as novas definições

Desigualdade das Médias: sendo $X_1, X_2, ..., X_n$ reais positivos e $\alpha > \beta$, temos:

$$\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{\alpha}\right)^{\frac{1}{\alpha}} \geq \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{\beta}\right)^{\frac{1}{\beta}}$$

$$Igualdade \iff x_1 = x_2 = \dots = x_n$$

Podemos usar pesos também.

Desigualdade de Chebychev: para $a_1, a_2, ..., a_n$ e $b_1, b_2, ..., b_n$ sequências crescentes, temos:

$$\frac{a_1b_n + a_2b_{n-1} + \dots + a_nb_1}{n} \le \frac{a_1 + \dots + a_n}{n} \frac{b_1 + \dots + b_n}{n} \le \frac{a_1b_1 + a_2b_2 + \dots + a_nb_n}{n}$$

Generalizando: sendo $x_{i,j}$, $1 \le i \le n$, $1 \le j \le m$ reais positivos com $x_{i,j} \le x_{i+1,j}$, $\forall j$, então temos:

$$\prod_{i=1}^{m} \left(\frac{1}{n} \sum_{i=1}^{n} x_{i,j} \right) \le \frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{m} x_{i,j}$$

Outros Truques

Resolver equação de segundo grau: quando podemos escrever uma desigualdade como função de segundo grau em uma das variáveis, é possível analisar a desigualdade como se as outras variáveis fossem parâmetros da função de segundo grau.

Abrir: a abertura de expressões pode ajudar a enxergar desigualdades.

Normalização: quando $f(x_1, x_2, ..., x_n)$? $0 \Leftrightarrow f(kx_1, kx_2, ..., kx_n)$?0, com k uma constante e ? algum sinal de comparação, então podemos supor que a soma das variáveis é $x_1 + x_2 + ... + x_n = 1$. Verifique se as variáveis são livres para supor tal soma!

Problemas

1- Sejam a, b, c, d reais não negativos. Prove que:

$$\sqrt{a+b+c} + \sqrt{a+b+d} + \sqrt{a+c+d} + \sqrt{b+c+d} \ge 3\sqrt{a+b+c+d}$$

2- Sejam a, b, c reais positivos. Prove que:

$$\frac{1}{a^3 + b^3 + abc} + \frac{1}{b^3 + c^3 + abc} + \frac{1}{c^3 + a^3 + abc} \le \frac{1}{abc}$$

3- Sejam a, b, c reais positivos. Prove que:

$$a+b+c \le \frac{a^2+b^2}{2c} + \frac{a^2+c^2}{2b} + \frac{b^2+c^2}{2a} \le \frac{a^3}{bc} + \frac{b^3}{ac} + \frac{c^3}{ab}$$

4- Sejam x, y, z reais. Prove que:

$$4x(x+y)(x+z)(x+y+z) + y^2z^2 \ge 0$$

5- Sejam $x_1, x_2, ..., x_n$ reais positivos tais que $x_1 + x_2 + ... + x_n = 1$, $n \ge 2$. Prove que:

$$\frac{x_1}{2 - x_1} + \frac{x_2}{2 - x_2} + \dots + \frac{x_n}{2 - x_n} \ge \frac{n}{2n - 1}$$

6- Sejam $x_1, x_2, ..., x_n$ reais positivos tais que $x_1 + x_2 + ... + x_n = 1$, $n \ge 2$. Prove que:

$$\frac{x_1}{\sqrt{1-x_1}} + \frac{x_2}{\sqrt{1-x_2}} + \dots + \frac{x_n}{\sqrt{1-x_n}} \ge \frac{\sqrt{x_1} + \sqrt{x_2} + \dots + \sqrt{x_n}}{\sqrt{n-1}}$$

7- Sejam a, b, c, d reais não negativos. Prove que:

$$\sqrt{ab} + \sqrt{ac} + \sqrt{ad} + \sqrt{bc} + \sqrt{bd} + \sqrt{cd} \le \frac{3}{2} (a + b + c + d)$$

8- Sejam a, b, c, d reais não negativos. Prove que:

$$bc(b+c)+ca(c+a)+ab(a+b) \le 2(a^3+b^3+c^3)$$

9- Sejam x, y, z reais positivos. Prove que:

$$\frac{x}{(x+y)(x+z)} + \frac{y}{(y+x)(y+z)} + \frac{z}{(z+x)(z+y)} \le \frac{9}{4(x+y+z)}$$

10- Sejam $x_1, x_2, ..., x_n$ reais positivos com soma igual a 1; $0 < \alpha < \beta$ tais que $\beta x_1 - \alpha x_2 > 0$, $\beta x_2 - \alpha x_3 > 0$, ..., $\beta x_{n-1} - \alpha x_n > 0$, $\beta x_n - \alpha x_1 > 0$. Prove que:

$$\frac{x_{1}^{3}}{\beta x_{1} - \alpha x_{2}} + \frac{x_{2}^{3}}{\beta x_{2} - \alpha x_{3}} + \dots + \frac{x_{n}^{3}}{\beta x_{n} - \alpha x_{1}} \ge \frac{1}{n(\beta - \alpha)}$$

11- Sendo *n* um inteiro positivo, mostre que:

$$\frac{1}{2} \frac{3}{4} \frac{5}{6} \dots \frac{2n-1}{2n} \le \frac{1}{\sqrt{3n+1}}$$

12- Sejam $X_1, X_2, ..., X_n, X_{n+1}$ rea
is positivos tais que:

$$\frac{1}{1+x_1} + \frac{1}{1+x_2} + \dots + \frac{1}{1+x_n} + \frac{1}{1+x_{n+1}} = 1$$

Prove que:

$$x_1 x_2 \dots x_n x_{n+1} \ge n^{n+1}$$

Referências:

- [1] Eureka! 5: Desigualdades Elementares
- [2] Eureka! 23: Contas com Desigualdades