Meus problemas favoritos da Cone Sul

1) (Cone Sul 91) Dado um número natural n (diferente de 0), seja f(n) a média de todos seus divisores positivos. Por exemplo:

$$f(3) = (1+3)/2 = 2$$
 e $f(12) = (1+2+3+4+6+12)/6 = 14/3$

- a) Demonstre que: $\sqrt{n} \le f(n) \le \frac{n+1}{2}$
- **b)** Encontre todos os números naturais n para os quais: f(n) = 91/9
- 2) (Cone Sul 93) Determine o número de elementos que pode ter um conjunto B contido em $\{1, 2, ..., n\}$ com a seguinte propriedade:

Para quaisquer a e b elementos de B, com a diferente de b, (a - b) não divide (a + b).

3) (Cone Sul 94) Seja ABC um triângulo retângulo em C. Sobre o lado AB toma-se um ponto D, de modo que CD = k, e os raios das circunferências inscritas nos triângulos ADC e CDB são iguais.

Demonstrar que a área do triângulo ABC é igual a k^2 .

4) (Cone Sul 96) Considerar uma seqüência de números reais definida por $a_{n+1} = a_n + 1/a_n$ para n = 0, 1, 2, ...

Demonstrar que, qualquer que seja o número real positivo a_0 , tem-se que a_{1996} é maior que 63.

5) (Cone Sul 96) Se pretende cobrir totalmente un quadrado de lado k (k inteiro e maior que um) com os seguintes retângulos: 1 retângulo de 1×1 , 2 retângulos de 2×1 , 4 retângulos de 3×1 , ..., 2^n retângulos de $(n+1) \times 1$, de tal maneira que os retângulos não se superponham nem excedam os límites do quadrado.

Achar todos os valores de k para os quais isto é possível e, para cada valor de k encontrado, desenhar uma solução.

- 6) (Cone Sul 97) Demonstrar que existem infinitos ternos (a, b, c), com a, b, c números naturais, que satisfazem a relação: $2a^2 + 3b^2 5c^2 = 1997$.
- 7) (Cone Sul 98) Prove que, pelo menos para 30% dos naturais n entre 1 e 1.000.000, o primeiro dígito de 2^n é 1.
- 8) (Cone Sul 98) Em *Terra Brasilis* existem *n* casas onde vivem *n* duendes, cada um em uma casa. Existem estradas de mão única de tal modo que:
- cada estrada liga duas casas;
- em cada casa começa exatamente uma estrada;

em cada casa termina exatamente uma estrada.

Todos os dias, a partir do dia 1, cada duende sai da casa onde está e chega à casa vizinha. Uma lenda de *Terra Brasilis* diz que, quando todos os duendes regressarem à posição original, o mundo acabará.

- a) Demonstre que o mundo acabará.
- b) Se n = 98, demonstre que é possível que os duendes construam e orientem as estradas de modo que o mundo não se acabe antes de 300.000 anos.
- 9) (Cone Sul 99) Há 1999 bolinhas em uma reta; algumas são vermelhas e as demais azuis (poderiam ser todas vermelhas ou todas azuis). Debaixo de cada bolinha escrevemos o número igual à soma da quantidade de bolinhas vermelhas à direita dela mais quantidade de bolinhas azuis à esquerda dela. Se, na sequência de números assim obtida, houver exatamente três números que aparecem uma quantidade ímpar de vezes, quais podem ser estes três números?
- 10) (Cone Sul 99) É dado um quadrado de lado1. Demonstrar que, para cada conjunto finito de pontos no bordo do quadrado, é possível achar um vértice do quadrado com a seguinte propriedade: a média aritmética dos quadrados das distâncias de tal vértice aos pontos do conjunto é maior ou igual a $\frac{3}{4}$.
- 11) (Cone Sul 00) Um quadrado de lado 2 é dividido em retângulos mediante várias retas paralelas aos lados (algumas horizontais e outras verticais). Os retângulos são coloridos alternadamente de preto e branco, como se fosse um tabuleiro de xadrez. Se deste modo a área branca resultou igual a área preta, demonstrar que ao recortar os retângulos pretos ao longo de seus bordos, é possível formar com estes (sem superposição) um retângulo preto 1×2 .
- 12) (Cone Sul 00) Existe um inteiro positivo divisível pelo produto de seus algarismos e tal que esse produto é maior que 10²⁰⁰⁰?
- 13) (Cone Sul 02) Dizemos que um inteiro n, n, > 1, é *ensolarado* se ele é divisível pela soma dos seus fatores primos. Por exemplo, 90 é ensolarado pois $90=2\cdot3^2\cdot5$ e 2+3+5=10 divide 90. Mostre que existe um número ensolarado com pelo menos 10^{2002} fatores primos distintos.
- 14) (Cone Sul 03) Demonstrar que existe uma sequência infinita de inteiros positivos $x_1, x_2, ..., x_n, ...$ que satisfaz as seguintes condições:
- i) contém exatamente uma vez cada um dos inteiros positivos.
- ii) para cada n = 1, 2, ... a soma parcial $x_1 + x_2 + ... + x_n$ é divisível por n^n .

15) (Cone Sul 04) Dada uma circunferência C e um ponto P exterior a ela, traçam-se por P as duas tangentes à circunferência, sendo A e B os pontos de tangência. Toma-se um ponto Q sobre o menor arco AB de C. Seja M a interseção da reta AQ com a perpendicular à

AQ traçada por P, e seja N a interseção da reta BQ com a perpendicular à BQ traçada por P.

Demonstre que, ao variar Q no arco AB, todas as retas MN passam por um mesmo ponto.

- 16) (Cone Sul 05) No plano cartesiano traçamos circunferências de raio 1/20 com centros em cada ponto de coordenadas inteiras. Mostre que qualquer circunferência de raio 100 que se trace no plano intersecta pelo menos uma das circunferências pequenas.
- 17) (Cone Sul 06) Seja n um número natural. A sucessão finita α de inteiros positivos tem, entre seus termos, exatamente n números distintos (α pode ter números repetidos). Além disso, se de um de seustermos qualquer subtraímos 1, obtemos uma sucessão que tem, entre seus termos, pelo menos nnúmeros positivos distintos. Qual é o valor mínimo que pode ter a soma de todos os termos da sucessão α ?
- 18) (Cone Sul 07) Seja *ABC* um triângulo acutângulo com alturas *AD*, *BE* e *CF* (*D* em *BC*, *E* em *CA* e *F* em *AB*). Seja *M* o ponto médio de *BC*. A circunferência circunscrita ao triângulo *AEF* corta a reta *AM* em *A* e em *X*. A reta *AM* corta a reta *CF* em *Y*. Seja *Z* a interseção das retas *AD* e *BX*. Demonstre que as retas *YZ* e *BC* são paralelas.
- 19) (Cone Sul 2008) Seja ABC um triângulo isósceles de base AB. Uma semicircunferência C com centro no segmento AB e tangente aos lados iguais AC e BC. Considera-se uma reta tangente a C que corta os segmentos AC e BC em D e E, respectivamente. Suponha que as retas perpendiculares a AC e BC, traçadas respectivamente por D e E, se cortam em P interior ao triângulo ABC. Seja Q o pé da perpendicular à reta AB que passa por P. Demonstrar que $\frac{PQ}{CP} = \frac{1}{2} \cdot \frac{AB}{AC}$.
- 20) (Cone Sul 2008) Dizemos que um número é capícua se ao inverter a ordem de seus algarismos obtivermos o mesmo número. Achar todos os números que tem pelo menos um múltiplo não-nulo que seja capícua.
- 21) (Cone Sul 2009) Sejam A, B e C três pontos tais que B é ponto médio do segmento AC e seja P um ponto tal que $DPBC = 60^{\circ}$. São construídos o triângulo equilátero PCQ tal que B e Q estão em semiplanos diferentes em relação a PC, e o triângulo equilátero APR tal que B e R estão no mesmo semiplano em relação a AP. Seja X o ponto de interseção das retas BQ e PC; seja Y o ponto de interseção das retas BR e AP. Demonstre que XY e AC são paralelos.
- 22) (Cone Sul 2010) Recortar um polígono convexo de n lados significa escolher um par de lados consecutivos AB,BC do polígono e substitui-los por três segmentos AM, MN e NC, sendo M o ponto médio de AB e N o ponto médio de BC. Em outras palavras, corta-se o triângulo MBN e obtém-se um polígono convexo de n+1 lados. Seja P_6 um hexágono regular de área 1. Recorta-se P_6 e obtém-se o polígono P_7 . Então recorta-se P_7 , de uma das sete maneiras possíveis, e obtém-se o polígono P_8 , e assim

sucessivamente. Prove que, independentemente de como sejam feitos os recortes, a área de P_n é sempre maior do que 2/3.

23) (Cone Sul 2012) Em um quadrado ABCD, seja P um ponto sobre o lado CD, distinto de C e D. No triângulo ABP traça-se as alturas AQ e BR, e seja S o ponto de interseção das retas CQ e DR. Demonstre que $\langle ASB = 90^{\circ}$.