XIX Semana Olímpica de Matemática Nível 1

Não tema números grandes ou estranhos José Armando Barbosa

O projeto da XIX Semana Olímpica de Matemática foi patrocinado por:

Não tema números grandes ou estranhos

Semana Olímpica/2016

Prof. Armando

29 de janeiro de 2016

1 Introdução

Em algumas questões de olimpíadas, surgem números grandes como 3^{2016} , $2014 \cdot \sqrt[2014]{2014!}$ ou números estranhos como $\frac{1}{\sqrt[4]{5^4+1}-\sqrt[4]{5^4-1}}$. Nesses casos, o primeiro passo é lembrar que, geralmente, questão de olímpiada raramente se resolve com trabalho árduo de uma conta como, por exemplo, dividir 1428879 por 35207.

Depois disso, tem que buscar "usar o talento e a experiência" para resolver. Em alguns casos, olhar "restos de divisão" e "fatoração em números primos" ajuda bastante. Em outros, alguma "fatoração algébrica" é um grande passos. Vejamos como funciona algumas situações com os exemplos a seguir.

2 Problemas

Problema 1 (Azerbaijão JBMO TST/2015) Seja $A = 1 \cdot 4 \cdot 7 \cdots 2014$. Encontre o dígito diferente de 0 mais à direita de A.

Problema 2 (Cone Sul/2015) Mostre que, para todo inteiro n, o número $n^3 - 9n + 27$ não é divisível por 81.

Problema 3 (Alemanha/2015) A soma de 335 inteiros positivos distintos entre si é igual a 100000.

- a) Qual é o número mínimo de números ímpares entre eles?
- b) Qual é o número máximo de números ímpares entre eles?

Problema 4 (Rússia/2014) Seja a um número legal se a quantidade de divisores primos de a é igual a 2. Existe um grupo de 18 números consecutivos legais?

Problema 5 (Cone Sul/2014) Os números de 1 a 2014 são escritos numa lousa. Uma operação válida é apagar dois números a e b e reescrever no lugar deles mdc(a,b) e mmc(a,b).

Prove que, não importa quantas operações são feitas, a soma dos números na lousa em qualquer momento é maior que $2014 \cdot \frac{2014}{2014!}$.

Problema 6 (HMMT/2014) Encontre o número inteiro mais próximo da expressão:

$$\frac{1}{\sqrt[4]{5^4+1} - \sqrt[4]{5^4-1}}$$

Problema 7 (JBMO - Shortlist/2012) Sejam $a \in b$ inteiros tais que:

$$s = a^3 + b^3 - 60ab(a+b) \geqslant 2012$$

Encontre o menor valor possível de s.

Problema 8 (Indonesia/2014) É possível preencher um tabuleiro 3×3 com os números de 1 a 9 , usando cada número uma vez, de forma que a soma de quaisquer dois números que possuem um lado em comum seja um número primo?

Problema 9 (África do Sul/2014)-adaptada Determine os três dígitos mais à direita do produto de todos os quadrados de inteiros positivos ímpares menores que 2014.

Problema 10 (Cazaquistão/2013) Numa lousa, são escritos os números de 1 a 25. Bob escolhe três números a, b e c apaga eles e escreve $a^3 + b^3 + c^3$. Prove que o último número escrito na lousa não pode ser 2013^3 .

Problema 11 Encontre os três últimos algarismos de 3^{2016} .

Problema 12 $(Ucr\hat{a}nia/2012)$ Prove que $91 \mid [5^n.(5^n + 1) - 6^n.(3^n + 2^n)].$