38° OLIMPÍADA BRASILEIRA DE MATEMÁTICA

2ª Fase – Nível Universitário

PRIMEIRO DIA

1. Seja $(a_n)_{n\geq 1}$ uma sucessão de números reais tal que $\sum_{n\geq 1} \frac{a_n}{n}$ converge. Prove que

$$\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^n a_k=0.$$

2. Encontre todas as funções $f : \mathbb{R} \to \mathbb{R}$ tais que

$$f(x^2 + y^2 f(x)) = x f(y)^2 - f(x)^2$$

para quaisquer $x, y \in \mathbb{R}$.

3. Seja $k \ge 1$ um inteiro. Definimos a sequência $(a_n)_{n\ge 0}$ por $a_0=0$, $a_1=1$ e

$$a_{n+1} = ka_n + a_{n-1}$$

para n=1,2,... Seja p um número primo ímpar. Denote por m(p) o menor inteiro positivo i tal que $p|a_i$. Denote por T(p) o menor inteiro positivo tal que para qualquer natural j temos $p\mid a_{j+T(p)}-a_j$.

- (i) Mostre que $T(p) \le m(p)(p-1)$.
- (ii) Se T(p) = m(p)(p-1), mostre que

$$\prod_{\substack{1 \le j \le T(p) - 1 \\ j \not\equiv 0 \pmod{m(p))}}} a_j \equiv (-1)^{m(p) - 1} \pmod{p}.$$

38ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA

2ª Fase – Nível Universitário

SEGUNDO DIA

4. Seja

$$A = \left(\begin{array}{cc} 4 & -\sqrt{5} \\ 2\sqrt{5} & -3 \end{array} \right).$$

Encontre todos os pares de números $(n, m) \in \mathbb{N} \times \mathbb{Z}$ com $|m| \le n$ tais que

$$A^n - (n^2 + m)A$$

tenha todas as entradas inteiras.

- **5.** Uma bola de futebol é usualmente obtida a partir de uma figura poliédrica que possui faces de dois tipos, hexágonos e pentágonos, e em cada vértice incidem três faces, sendo dois hexágonos e um pentágono. Diremos que um poliedro é *futebolístico*, se é semelhante à bola de futebol no seguinte sentido: possui as faces sendo *m*-ágonos ou *n*-ágonos (com $m \neq n$) e em cada vértice incidem três faces, sendo dois *m*-ágonos e um *n*-ágono.
 - (i) Prove que *m* deve ser par.
 - (ii) Encontre todos os poliedros futebolísticos.
- **6.** Sejam C, D > 0. Dizemos que uma função $f : \mathbb{R} \to \mathbb{R}$ é bonita se f é de classe C^2 , $|x^3f(x)| \le C$ e $|xf''(x)| \le D$ para todo $x \operatorname{com} |x| \ge 1$.
 - (i) Prove que se f é uma função bonita então, dado $\varepsilon > 0$, existe $x_0 > 0$ tal que, para $|x| \ge x_0$, $|x^2 f'(x)| < \sqrt{2CD} + \varepsilon$.
 - (ii) Prove que, se $0 < E < \sqrt{2CD}$, então existe uma função bonita $f : \mathbb{R} \to \mathbb{R}$ tal que, para todo $x_0 > 0$, existe $x > x_0$ com $|x^2 f'(x)| > E$.