TEOREMA DOS RESÍDUOS

Profesor Marcio Cohen <marciocohen@gmail.com> Colégio Ponto de Ensino

1. DEFINIÇÕES

EULER: $e^{ix} = \cos x + isenx$

LOGARITMO:
$$z = re^{i\theta} \Rightarrow \ln z = \ln r + i(\theta + 2k\pi), k \in \mathbb{Z}$$

- (i) Costuma-se definir o valor principal do \ln acima quando $\ell=0$ e $0<\theta<2\pi$.
- (ii) Obs: Para que o LOG seja uma função, uma opção é restringi-lo ao conjunto $C \setminus R_+$
- (iii) Obs: $w = z^{\alpha} \implies w = e^{\alpha \ln z}$
- (iv) As relações acima definidas não são funções, a não ser que estejam restritas em algum ramo

2. FUNÇÃO HOLOMORFA

 $f: C \to C$ é dita holomorfa em a quando existe uma vizinhança de a na qual f é derivável.

3. SINGULARIDADE

É um ponto z_0 do domínio da f onde sua derivada não existe. Os principais tipos de singularidade são:

POLO: Quando
$$\exists n \in \mathbb{N}^*$$
; $\lim_{z \to z_0} (z - z_0)^n f(z) = A \in \mathbb{C}^*$, onde $n \notin \text{dito ordem do pólo.}$

REMOVÍVEL: Quando
$$\lim_{z\to z_0} f(z) \in C$$

ESSENCIAL: Quando a função apresenta uma singularidade que não é pólo nem é removível.

4. INTEGRAÇÃO:
$$z = x + iy$$
, $f(z) = u + iv$

$$\int_C f(z)dz = \int_C (u+iv)(dx+idy)$$

Para integrar, basta parametrizar a curva C e então efetuar a integral normalmente (é uma integral de linha).

Definição: Dada uma curva fechada C, denotaremos por R(C) a região limitada por C (incluindo seu bordo).

5. CAUCHY-GOURSAT: Se
$$f$$
 é analítica em R (C), então $\oint_C f(z)dz = 0$

6. CAUCHY:
$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$
 se f for holomorfa em $R(C)$.

7. SÉRIE DE LAURENT: Sejam C_1 e C_2 círculos concêntricos de raios $r_1 > r_2$ e centro z_0 . Se f é função holomorfa no anel assim definido, então podemos escrever:

$$f(z) = \dots + \frac{a_{-2}}{(z - z_0)^2} + \frac{a_{-1}}{(z - z_0)} + a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \dots,$$

onde a_{-1} é denominado resíduo da função e é a parte mais importante dessa aula.

Se
$$a$$
 for um pólo de ordem 1, então $res_{z_0} f = a_{-1} = \lim_{z \to z_0} (z - z_0) f(z)$

Obs: Se z_0 é pólo de ordem k, então a série é finita à esquerda e

$$a_{-1} = \lim_{z \to z_0} \frac{1}{(k-1)!} \frac{d^{k-1}}{dz^{k-1}} (z - z_0)^k f(z).$$

8. TEOREMA DOS RESÍDUOS: Se f é holomorfa em R(C) exceto em pólos a, b, c, ... temos:

1

$$\oint_C f(z)dz = 2\pi i (a_{-1} + b_{-1} + c_{-1} + ...) = 2\pi i \sum_{z_0} res_{z_0} f$$

Residuos

9. LEMAS IMPORTANTES:

- 9.1. Se existe um real M e um k > 1 tal que $|f(z)| \le \frac{M}{r^k}$, $z = re^{i\theta}$, então $\oint_{\Gamma} f(z) dz = 0$ quando Γ é o semi-círculo de centro na origem e raio r.
- 9.2. Se existe um real M e um k > 0 tal que $|f(z)| \le \frac{M}{r^k}$, $z = re^{i\theta}$, então $\oint_{\Gamma} e^{imz} f(z) dz = 0$ quando Γ é o semi-círculo de centro na origem e raio r.
- 9.3. Seja C_N o quadrado simétrico em relação a origem de lado 2N+1. Se f é tal que $|f(z)| \le \frac{M}{|z|^k}$, (k > 1e M) constante) em C_N , com k, M independentes de N, então: $\sum_{-\infty}^{\infty} f(n) = -\sum_{z_0 \ polodef} \pi \cot(\pi \ z) f(z)$

EXERCÍCIOS

1. Calcule
$$I(a) = \int_{0}^{2\pi} \frac{d\theta}{a + \cos \theta}$$
, $a > 1$

2. (IMC adaptado)
$$\int_{-\pi}^{\pi} \frac{sen(nx)}{senx} dx$$

$$3. \int_{0}^{\infty} \frac{1}{1+x^5} dx$$

4.
$$\int_{0}^{\infty} \frac{(\log x)^2}{x^2 + 1}$$

5.
$$\int_{0}^{\infty} \frac{senx}{x} dx$$

$$6. \int_{0}^{\infty} e^{-x^2} dx$$

$$7. \int_{0}^{\infty} \frac{\cos(mx)}{x^2 + 1} dx$$

8. (OBM)
$$\int_{0}^{\pi} \ln(1-2r\cos\theta+r^2)d\theta$$

$$9. \sum_{n=1}^{\infty} \frac{1}{n^2 + a^2}$$

$$10. \sum_{n=1}^{\infty} \frac{1}{n^4}$$

11. (IMC)
$$\sum_{ramos} (\log z)^{-4}$$

12.
$$1 - \frac{1}{3^5} + \frac{1}{5^5} - \frac{1}{7^5} + \dots$$