Semana Olímpica 2011 Função Parte Inteira

Samuel Feitosa

1 Definição e Propriedades

Definição 1.1. A parte inteira de um número real x é o maior inteiro $\lfloor x \rfloor$ que não é maior que x. Definimos a parte fracionária $\{x\}$ de x por $\{x\} = x - \lfloor x \rfloor$. (exemplos: $\lfloor 3 \rfloor = 3$, $\lfloor 3, 5 \rfloor = 3$ e $\lfloor -4, 7 \rfloor = -5$)

Teorema 1.1. Sejam x e y números reais. Então:

- 1. $\lfloor x \rfloor \le x < \lfloor x \rfloor + 1$ e $0 \le \{x\} < 1$.
- 2. |x+m| = |x| + m se m é um inteiro.
- 3. $\lfloor x \rfloor + \lfloor y \rfloor \le \lfloor x + y \rfloor \le \lfloor x \rfloor + \lfloor y \rfloor + 1$.
- 4. $\left| \frac{\lfloor x \rfloor}{m} \right| = \left\lfloor \frac{x}{m} \right\rfloor$ se m é um inteiro positivo.
- 5. Se n e a são inteiros positivos, $\left\lfloor \frac{n}{a} \right\rfloor$ é o número de inteiros entre 1,2,...,n que são divisíveis por a.

Teorema 1.2 (Fórmula de Polignac). Seja p um primo. Então o maior expoente e tal que $p^e|n!$ é $e = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor$.

Exercício 1.1. Mostre que $\lfloor x+y \rfloor + \lfloor x \rfloor + \lfloor y \rfloor \leq \lfloor 2x \rfloor + \lfloor 2y \rfloor$.

Exercício 1.2. Mostre que a parte fracionária do número $\sqrt{4n^2 + n}$ não é maior que 0,25.

Exercício 1.3. Mostre que $\sum_{i=0}^{k-1} \left[x + \frac{i}{k} \right] = \lfloor kx \rfloor$.

Exercício 1.4. Em quantos zeros termina a representação decimal de 1000?

Exemplo 1.1. Mostre que se m e n são inteiros positivos, então: $\frac{(2m)!(2n)!}{(m)!(n)!(m+n)!}$ é um inteiro.

Exercício 1.5. Prove que $\binom{2n}{n}$ divide $MMC\{1, 2, ..., 2n\}$.

Exercício 1.6. Sejam $\{a_i\}_{0 \le i \le r}$, inteiros não negativos com $n = a_1 + a_2 + ... + a_r$. Mostre que $\frac{n!}{a_1!a_2!...a_r!}$ é um inteiro.

Exercício 1.7. Considere um inteiro $n \ge 1$ e inteiros i, $1 \le i \le n$. Para cada k = 0, 1, 2, ... encontre o número de i's que são divisíveis por 2^k mas não por 2^{k+1} . Então prove que $\sum_{i=1}^{\infty} \left\lfloor \frac{n}{2^i} + \frac{1}{2} \right\rfloor = n$.

Exercício 1.8. Seja p um divisor primo do número $\binom{2n}{n}$ com $p \ge \sqrt{2n}$, então o expoente de p na fatoração em primos do do número $\binom{2n}{n}$ é igual a 1.

Teorema 1.3. Seja $v_p(n)$ a soma dos dígitos da representação de n na base p. Mostre que o expoente de p na fatoração em primos de n! é $\frac{n-v_pn}{n-1}$.

Exercício 1.9. Seja B(m) o conjunto dos inteiros r tais que 2^r é um termo na representação na base 2 de n. Por exemplo, $B(100) = \{2, 5, 6\}$. Prove que $\binom{n}{k}$ é impar se, e somente se, $B(k) \subseteq B(n)$.

Exemplo 1.2. Prove que existe um natural n tal que a representação decimal de n^2 começa (da esquerda para a direita) com o número 200620062006...2006 (2006 vezes).

Exercício 1.10. (OBM 1992) Prove que existe um natural n tal que a expansão decimal de n^{1992} começa com 1992 algarismos iguais a 1.

Exercício 1.11. (OBM 1999) Prove que há pelo menos um algarismo diferente de zero entre a 1000000^a e a 3000000^a casa decimal de $\sqrt{2}$ após a vírgula.

Exercício 1.12. Sejam a, m, b inteiros dados, com mdc(a, m) = 1. Calcule $\sum_{x=0}^{m-1} \left\lfloor \frac{ax+b}{m} \right\rfloor$.

Problemas

Problema 1.1. Prove que, para qualquer n natural, $\sum_{i=1}^{\infty} \left\lfloor \frac{n+2^{i-1}}{2^i} \right\rfloor = n$.

Problema 1.2. Prove que, para qualquer n natural, $\lfloor \sqrt{n} + \sqrt{n+1} + \sqrt{n+2} \rfloor = \lfloor \sqrt{9n+8} \rfloor$.

Problema 1.3. (Bulgária 1996) A sequêcia $\{a_n\}_{n=1}^{\infty}$ é definida por $a_1 = 1$ e $a_{n+1} = \frac{a_n}{n} + \frac{n}{a_n}$. Prove que se $n \ge 4$ então $|a_n|^2 = n$.

Problema 1.4. (Japão 1996) Seja x > 1 um número real que não é um inteiro. Defina para $n \ge 1, a_n = \lfloor x^{n+1} \rfloor - x \lfloor x^n \rfloor$. Prove que a sequência a_n não é periódica.

Problema 1.5. (Korea 1997) Expresse $\sum_{k=1}^{n} \lfloor \sqrt{k} \rfloor$ em termos de n e $\lfloor \sqrt{n} \rfloor$.

Problema 1.6. (Canadá 1998) determine o número de soluções reais da equação $\left\lfloor \frac{a}{2} \right\rfloor + \left\lfloor \frac{a}{3} \right\rfloor + \left\lfloor \frac{a}{5} \right\rfloor = a$.

Problema 1.7. (República Tcheca e Eslovaca 1998) Encontre todos os números reais x tais que x|x|x|x|||=88.

Problema 1.8. Encontre todos o reais α tais que a igualdade $\lfloor \sqrt{n} \rfloor + \lfloor \sqrt{n+\alpha} \rfloor = \lfloor \sqrt{4n+1} \rfloor$ é verdadeira para todos os naturais n.

Problema 1.9. Prove que, para todo inteiro positivo n, $\lfloor \sqrt{n} \rfloor + \lfloor \sqrt{n+1} \rfloor = \lceil \sqrt{n+2} \rceil$.

Problema 1.10. Se a, b, c são reais $e \lfloor na \rfloor + \lfloor nb \rfloor = \lfloor nc \rfloor$ para todo n natural, então $a \in \mathbb{Z}$ ou $b \in \mathbb{Z}$.

Problema 1.11. Sejam a, b, c e d números reais. Suponha que $\lfloor an \rfloor + \lfloor bn \rfloor = \lfloor cn \rfloor + \lfloor dn \rfloor$ para todos os inteiros positivos n. Mostre que pelo menos um dentre a + b, a - c, a - d é inteiro.

Problema 1.12. (São Petesburgo) Seja n um natural. Prove que o n-ésimo natural não quadrado é dado por $\lfloor n + \sqrt{n} + \frac{1}{2} \rfloor$.

Problema 1.13. (Romênia 2003) Sejam n e p inteiros positivos com $p > 2^n$. Prove que a parte inteira do número $\sum_{k=0}^n \sqrt[p]{1+\binom{n}{k}}$ é igual a n+1.

Problema 1.14. Seja $n \geq 3$ um inteiro positivo. Mostre que é possível eliminar no máximo dois elementos do conjunto $\{1, 2, ..., n\}$ de modo que a soma dos números restantes seja um quadrado perfeito.

Problema 1.15. Encontre todos os inteiros positivos n tais que $\left| \frac{n^3 + 8n^2 + 1}{3n} \right|$ é um número primo.

Problema 1.16. (Rioplatense) Seja r um real tal que $\left\lfloor r + \frac{19}{100} \right\rfloor + \left\lfloor r + \frac{20}{100} \right\rfloor + \dots + \left\lfloor r + \frac{92}{100} \right\rfloor = 554$. Calcule $\lfloor 100r \rfloor$.

Problema 1.17. Se $p \not\in primo$, então $\binom{p^k}{i} \equiv 0 \pmod{p}$ (para $1 \le i \le p^k - 1$).

Problema 1.18. Prove que, se p é um número primo, então a diferença $\binom{n}{p} - \left\lfloor \frac{n}{p} \right\rfloor$ é divisível por p.

Problema 1.19. (Korea 2000) Seja p um número primo tal que $p \equiv 1 \pmod{4}$. Calcule:

$$\sum_{i=1}^{p-1} \left(\left\lfloor \frac{2k^2}{p} \right\rfloor - 2 \left\lfloor \frac{k^2}{p} \right\rfloor \right). \ (Neste \ problema, \ talvez \ você \ precise \ usar \ um \ pouco \ de \ resíduos \ quadráticos)$$

Problema 1.20. Prove que, se os números positivos α e β têm a propriedade que entre os números $\lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor, \ldots$; $\lfloor \beta \rfloor, \lfloor 2\beta \rfloor, \lfloor 3\beta \rfloor, \ldots$ todo natural ocorre exatamente uma vez, então α e β são irracionais tais que $\frac{1}{\alpha} + \frac{1}{\beta} = 1$. Reciprocamente, se α e β são irracionais com a propriedade $\frac{1}{\alpha} + \frac{1}{\beta} = 1$ então todo natural ocorre precisamente uma vez na sequência: $\lfloor \alpha \rfloor, \lfloor 2\alpha \rfloor, \lfloor 3\alpha \rfloor, \ldots$; $\lfloor \beta \rfloor, \lfloor 2\beta \rfloor, \lfloor 3\beta \rfloor, \ldots$

Problema 1.21. (Revista Eureka)Prove que se $A \subset \mathbb{N}$ é um conjunto não-vazio tal que $n \in A \Rightarrow 4n \in A$ e $|\sqrt{n}| \in A$ então $A = \mathbb{N}$.

2 Trabalhando em $\mathbb{Z} \times \mathbb{Z}$

Muitos problemas podem ficar simplificados se tentarmos dar outro tipo de interpretação à eles. Nesta seção tentaremos dar uma interpretação geométrica para certas somas envolvendo "partes inteiras". Começaremos com um fato que irá nos ajudar bastante.

Exemplo 2.1. Considere um tabuleiro T, de dimensões $m \times n$, onde m e n são inteiros positivos. Prove que uma diagonal de T passa por exatamente m + n - mdc(m, n) quadradinhos 1×1 .

Exemplo 2.2. Suponha que
$$mdc(p,q) = 1$$
. $Ent\tilde{ao} \sum_{i=1}^{q-1} \left\lfloor \frac{ip}{q} \right\rfloor = \sum_{i=1}^{p-1} \left\lfloor \frac{iq}{p} \right\rfloor = \frac{(p-1)(q-1)}{2}$.

Problemas

Problema 2.1. (Taiwan 1998) Mostre que, para inteiros positivos m e n, $mdc(m,n) = 2\sum_{k=0}^{m-1} \left\lfloor \frac{kn}{m} \right\rfloor + m + n - mn$.

Problema 2.2. (Balcânica 2003) Seja ABCD um tabuleiro $m \times n$ de quadrados unitários. Assuma que mdc(m,n)=1 e m, n são ímpares. Os pontos de interseção entre a diagonal principal AC e os lados dos quadrados unitários são $A_1,A_2,...,A_k$, nesta ordem $(k \ge 2)$ e $A_1=A,A_k=C$. Prove que $A_1A_2-A_2A_3+A_3A_4-...+(-1)^kA_{k-1}A_k=\frac{\sqrt{m^2+n^2}}{mn}$.

Problema 2.3. (Geórgia 1998) dado n>5, as retas x=n e y=n são desenhadas no plano cartesiano, considere os pontos com coordenadas inteiras no interior (ou bordo) do quadrado formado por essas retas e pelos eixos. Quantos desses pontos tem a soma das coordenadas multiplo de 5?

Problema 2.4. Um jogador solitário recebe após cada jogada a ou b pontos (a e b são inteiros positivos com a < b) e estes se acumulam jogada após jogada. Existem 35 valores impossíveis para a pontuação acumulada e um desses valores é 58. Encontre a e b.

3 Conjugados

Suponha que α seja um irracional e que estamos interessados em calcular o resto de $\lfloor \alpha^n \rfloor$ mod m. Se encontrarmos um β tal que $0 < \beta < 1$, $\alpha + \beta$ e $\alpha\beta \in \mathbb{Z}$ nosso trabalho será facilitado. Considere a equação: $x^2 - ax - b = 0$ onde $a = \alpha + \beta$ e $b = \alpha\beta$. Como α e β são raízes:

$$\alpha^2 = a\alpha + b \Rightarrow \alpha^{n+1} = a\alpha^n + b\alpha^{n-1}$$
$$\beta^2 = a\beta + b \Rightarrow \beta^{n+1} = a\beta^n + b\beta^{n-1}$$

Seja $K_n = \alpha^n + \beta^n$. Assim $K_{n+1} = aK_n + bK_{n-1}$. Como a e b são inteiros e $K_1 = \alpha + \beta \in \mathbb{Z}$, $K_2 = (\alpha + \beta)^2 - 2\alpha\beta \in \mathbb{Z} \Rightarrow K_n \in \mathbb{Z} \forall n \in \mathbb{N}$. $K_n \in \mathbb{Z} \Rightarrow \{\alpha^n\} + \lfloor \alpha^n \rfloor + \{\beta^n\} + \lfloor \beta^n\} + \lfloor \beta^n \rfloor \in \mathbb{Z} \Rightarrow \{\alpha^n\} + \{\beta^n\} \in \mathbb{Z}$. Mas $0 < \{\alpha^n\} + \{\beta^n\} < 2 \Rightarrow \{\alpha^n\} + \{\beta^n\} = 1$ Como $0 < \beta < 1 \Rightarrow \lfloor \beta^n \rfloor = 0 \Rightarrow K_n = \lfloor \alpha^n \rfloor + 1$. Agora é bem mais fácil calcular $K_n \mod m$ pois sabemos que ele satisfaz uma recursão com os primeiros termos e a lei de formação conhecidos. Podemos modificar um pouco a idéia anterior para o caso $-1 < \beta < 0$.

Exemplo 3.1. Prove que, para todo natural n temos: $3 \mid \left\lfloor \left(\frac{7 + \sqrt{37}}{2} \right)^n \right\rfloor$.

Exercício 3.1. (Teste de Seleção do Brasil para a Cone Sul) Prove que para todo inteiro positivo k, a parte interia do número $(7 + 4\sqrt{3})^k$ é ímpar.

Exercício 3.2. (Olimpíada Iraniana) Mostre que, $k^n - \lfloor k^n \rfloor = 1 - \frac{1}{k^n}$ onde $k = 2 + \sqrt{3}$.

Exemplo 3.2. Encontre a maior potência de 2 que divide $\lfloor (3+\sqrt{11})^{2n+11} \rfloor$.

Problemas

Problema 3.1. (Hungria 2000) Se $A = (1000 + \sqrt{1000^2 + 1})^{1000}$, determine o 2000-ésimo algarismo após a vírgula de sua representação decimal.

Problema 3.2. Prove que para todo inteiro m > 2 existe um irracional r que depende de m, tal que $|r^k| \equiv -1 \pmod{m}$.

Problema 3.3. Considere a sequêcica de reais positivos $a_1, a_2, ...,$ tal que $a_1 = 1$ $a_n = a_{n+1} + a_{n+2},$ para todo inteiro n > 0. Prove que o dígito das unidades de $\frac{1}{a_i}$ não pode ser 0,3,5 ou 8 para todo $i \in \mathbb{N}$.

Problema 3.4. (Seletiva do Brasil para a IMO-2001) Encontre todos os naturais n tais que $\alpha^n - n^2 \alpha$ é um inteiro onde $\alpha = \frac{1+\sqrt{5}}{2}$.

Problema 3.5. (Revista Eureka) Seja α a maior raiz da equação $x^3 - 3x^2 + 1 = 0$. Prove que $\lfloor \alpha^{2004} \rfloor$ é divisível por 17.

4