Vingança Olimpíca

Problema 1. Seja ABC um triângulo acutângulo e Γ o seu circuncírculo. A bissetriz do ângulo $\angle BAC$ corta o arco BC no ponto M, e r é uma reta qualquer paralela ao lado BC que corta AC em X e AB em Y. As retas retas MX e MY intersectam Γ em S e T, respectivamente. Se XY e ST se intersectam no ponto T, prove que AT é tangente a Γ .

Problema 2. a) Seja n um inteiro positivo. Prove que $mdc(n, \lfloor n\sqrt{2} \rfloor) < \sqrt[4]{8}\sqrt{n}$.

b) Prove que existem infinitos inteiros positivos n para os quais $mdc(n, \lfloor n\sqrt{2} \rfloor) > \sqrt[4]{7.99}\sqrt{n}$.

Problema 3. Em um tabuleiro $2n \times 2n$ colocam-se sem sobreposição peças de tamanho $1 \times n$ na horizontal ou vertical, $n \ge 3$. Qual é o menor número k de peças que podem ser distribuídas no tabuleiro de modo que não seja possível adicionar mais nenhuma dessas peças?

Problema 4. Seja a > 1 um inteiro e f um polinômio com coeficientes inteiros e coeficiente líder positivo. Se S é o conjunto dos naturais n tais que

$$n \mid a^{f(n)} - 1,$$

prove que S tem densidade 0, isto é, que $\lim_{n\to\infty}\frac{1}{n}|S\cap\{1,2,3,...,n\}|=0$