

XX Semana Olímpica – 2017 – Nível II

Problemas bonitinhos com soluções belas

Ana Karoline

- 1) Seja ABC um triângulo, e seja M o ponto médio de BC. Sendo I_{b} e I_{c} os incentros de AMB e AMC, prove que a segunda interseção dos circuncírculos de ABI_{b} e ACI_{c} distinto de A pertence a retaAM.
- 2) Seja ABC um triângulo. Pegue o ponto D em AB e o ponto E em AC tal que DE||BC. A reta DE intersecta o circuncírculo de ABC em dois pontos distintos F e G tal que os segmentos de reta BF e CG se intersectam em P. Dado que o circuncentro de GDP e FEP intersectam-se novamente em Q, prove que A, P, Q são colineares.
- 3) Dado ABCD um quadrilátero convexo, seja E a interseção das bissetrizes dos ângulos $\angle B$ e $\angle C$. Dado F a interseção dos segmentos \overrightarrow{BA} e \overrightarrow{CD} , prove que se AB+CD=BC, então A,D,E,F são concíclicos.
- 4) Dado $\triangle ABC$ um triângulo acutângulo, com O sendo seu circuncentro. O ponto H é o pé da perpendicular de A para a reta \overrightarrow{BC} , e os pontos P e Q são os pés das perpendiculares de H para as retas \overrightarrow{AB} e \overrightarrow{AC} , respectivamente. Dado que $AH^2 = 2 \cdot AO^2$, prove que os pontos O, P, e Q são colineares.

- 5) Sejam A, B, C, D pontos distintos em uma reta, nesta ordem. As circunferências Γ_1 e Γ_2 de diâmetros AC e BD se intersectam em X e Y. O é um ponto arbitrário da reta XY, não situado em AD. CO intersecta Γ_1 novamente em M, e BO intersecta Γ_2 novamente em N. Prove que AM, DN e XY são concorrentes.
- 6) Dado ABCD um quadrilátero cíclico, seja X a interseção das diagonais AC e BD. Dado C_1 , D_1 e M pontos médios dos segmentos CX, DX e CD, respectivamente. As retas AD_1 e BC_1 se intersectam em Y, e a reta MY intersecta as diagonais AC e BD em diferentes pontos E e F, respectivamente. Prove que a reta XY é tangente à circunferência passando por E, F e X.
- 7) Seja *D* e *E* dois pontos nos lados *AB* e *AC*, respectivamente, do triângulo *ABC*, tal *DB* = *BC* = *CE*, e seja *F* o ponto de interseção das retas *CD* e *BE*. Prove que o incentro *I* do triângulo *ABC*, o ortocentro *H* do triângulo *DEF* e o ponto médio do arco *BAC* do circuncírculo do triângulo *ABC* são colineares.
- 8) Duas circunferências, ω_1 e ω_2 , de igual raio intersectam-se em diferentes pontos X_1 e X_2 . Considere a circunferência ω externamente tangente a ω_1 no ponto T_1 , e internamente tangente a ω_2 no ponto T_2 . Prove que as retas X_1T_1 e X_2T_2 se intersectam em um ponto sobre ω_2 .