

Resíduos Quadráticos

N3 – Professor Matheus Secco

Introdução 1

Estamos interessados em estudar congruências do tipo $x^2 \equiv a \pmod{n}$, onde x é inteiro e n é inteiro positivo. Quando existe x satisfazendo esta última congruência, dizemos que a é resíduo quadrático módulo n. Fatorando $n=p_1^{\alpha_1}\dots p_k^{\alpha_k}$ em produto de primos, pelo Teorema Chinês dos Restos, basta resolvermos $x^2 \equiv a \pmod{p_i^{\alpha_i}}, 1 \leqslant i \leqslant n$ e depois juntarmos as peças. Desta maneira, nosso roteiro será o seguinte:

- (i) Estudar os resíduos quadráticos módulo 2^{m} .
- (ii) Introduzir o símbolo de Legendre e estudar os resíduos quadráticos módulo p, onde p é primo ímpar.
- (iii) Estudar os resíduos quadráticos módulo p^m, onde p é primo ímpar.

Potências de 2 $\mathbf{2}$

O seguinte teorema classifica completamente os resíduos quadráticos ímpares módulo 2^m , onde $m \ge 3$ é inteiro positivo. Os resíduos quadráticos módulo 2 e 4 são fáceis de serem encontrados.

Teorema 1 Um inteiro ímpar a é resíduo quadrático módulo 2^m , $m \ge 3$ se, e somente se, é da forma 8k + 1, com k inteiro.

Demonstração: Provaremos inicialmente que se a é r.q módulo 2^m , então $a \equiv 1 \pmod{8}$. De fato, temos que $x^2 \equiv a \pmod{8}$, pois $m \ge 3$ e os resíduos quadráticos ímpares módulo 8 são exatamente os números da forma 8k + 1.

Feito isso, provaremos agora que se a = 8k + 1, então existe um inteiro x tal que $x^2 \equiv a \pmod{2^m}$. A prova será por indução em m, sendo o caso m=3 trivial. Suponha então que existe x_0 tal que $x_0^2\equiv \mathfrak{a}(\text{mod }2^m)$. Tome

$$x^\prime = x_0 + 2^{m-1}$$

e veja que

$$x'^2 = x_0^2 + 2^m x_0 + 2^{2m-2}$$
.

Como $\mathfrak{m} \geqslant 3$, segue que

$$x'^2 \equiv x_0^2 + 2^m x_0 (\operatorname{mod} 2^{m+1}).$$

Por outro lado, temos que $x_0^2 = 2^m \ell + \alpha$, $\ell \in \mathbb{Z}$ e há duas possibilidades: ℓ par ou ℓ ímpar. Se ℓ é par, temos que $x_0^2 \equiv \alpha (\text{mod } 2^{m+1})$ e concluímos a indução. Por outro lado, se ℓ é ímpar, temos que $x'^2 \equiv 2^m (\ell + x_0) + \alpha (\text{mod } 2^{m+1})$. Como ℓ e x_0 são ímpares, segue que $\ell + x_0$ é par e então $x'^2 \equiv a \pmod{2^{m+1}}$, como queriamos.

Nos dois casos, conseguimos concluir a indução e, portanto, provamos o resultado.

3 Primos

3.1 Resultados Iniciais

Teorema 2 Sejam $\mathfrak p$ um primo impar e $\mathfrak a$ um inteiro não divisível por $\mathfrak p$. Caso a congruência $\mathfrak x^2 \equiv \mathfrak a \pmod{\mathfrak p}$ possua solução, ela tem exatamente duas. Mais ainda, se $\mathfrak x_0$ é uma destas soluções, a outra é $-\mathfrak x_0$.

Demonstração: Se x_0 é uma destas soluções, então claramente $-x_0$ também é e devemos mostrar que x_0 e $-x_0$ são diferentes módulo p, o que é evidente, pois p é primo ímpar. Por fim, precisamos mostrar que não há mais do que duas soluções para esta congruência. Sendo p uma outra solução, temos que $p^2 - x_0^2 \equiv 0 \pmod{p}$ e então $p = 0 \pmod{p}$ o que nos dá $p = 0 \pmod{p}$ ou $p = 0 \pmod{p}$ o que mostra que só há duas soluções de fato.

Teorema 3 Seja $\mathfrak p$ um primo impar. Dentre os números $1,2,\dots,\mathfrak p-1$, exatamente $\frac{\mathfrak p-1}{2}$ são resíduos quadráticos e $\frac{\mathfrak p-1}{2}$ não são resíduos quadráticos.

Demonstração: É fácil ver que os resíduos quadráticos sáo os números

$$1^2, 2^2, \ldots, \left(\frac{p-1}{2}\right)^2$$
.

3.2 Símbolo de Legendre

Definição 1 Sendo p um primo ímpar e $\mathfrak a$ um inteiro não divisível por $\mathfrak p$, definimos o símbolo de Legendre $\left(\frac{\mathfrak a}{\mathfrak p}\right)$ por:

$$\left(\frac{\underline{a}}{p}\right) = \begin{cases} 1, \text{se a \'e um res\'iduo quadr\'atico m\'odulo p,} \\ -1, \text{se a n\~ao \'e um res\'iduo quadr\'atico m\'odulo p.} \end{cases}$$

Se a é múltiplo de $\mathfrak{p},$ definimos $\left(\frac{\mathfrak{a}}{\mathfrak{p}}\right)=0.$

As demonstrações dos teoremas a seguir podem ser encontradas em livros clássicos de Teoria dos Números.

Teorema 4 (Critério de Euler) Se p é um primo ímpar e a é um inteiro não divisível por p, então

$$\left(\frac{\mathfrak{a}}{\mathfrak{p}}\right) \equiv \mathfrak{a}^{(\mathfrak{p}-1)/2} \pmod{\mathfrak{p}}.$$

Corolário: Este resultado mostra por exemplo que -1 é resíduo quadrático módulo p, onde p é primo ímpar, se, e somente se, p é da forma 4k+1.

Teorema 5 (Multiplicatividade) O símbolo de Legendre é completamente multiplicativo, ou seja, se a e b são inteiros, temos que

$$\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right).$$

Corolário: O produto de dois resíduos quadráticos é um resíduo quadrático; o produto de dois não resíduos quadráticos também é um resíduo quadrático e por fim, o produto de um não resíduo quadrático por um resíduo quadrático não é um resíduo quadrático.

Teorema 6 Sendo p um primo ímpar, temos que

$$\left(\frac{2}{p}\right) = (-1)^{(p^2-1)/8}$$
.

Teorema 7 (Reciprocidade Quadrática) Se p e q são primos ímpares distintos, então

$$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2}\cdot\frac{q-1}{2}}.$$

4 Potências de primo

Teorema 8 Seja $k\geqslant 1$. Se p é um primo impar que não divide a e x_k é tal que

$$x_k^2 \equiv a \pmod{p^k}$$
,

então existe x_{k+1} tal que

$$\begin{aligned} x_{k+1} &\equiv x_k (\operatorname{mod} p^k), \\ x_{k+1}^2 &\equiv a (\operatorname{mod} p^{k+1}). \end{aligned}$$

Demonstração: Afirmamos que existe $0 \le t \le p-1$ tal que $x_{k+1} = x_k + tp^k$ satisfaz o desejado. Inicialmente, veja que sempre temos $x_{k+1} \equiv x_k (\bmod p^k)$. Para finalizar, veja que

$$(x_k + tp^k)^2 = x_k^2 + 2tx_kp^k + t^2p^{2k} \equiv x_k^2 + 2tx_kp^k (\operatorname{mod} p^{k+1}).$$

Sendo $x_k^2 = p^k \ell + a$, obtemos que

$$(x_k + tp^k)^2 \equiv p^k (2tx_k + \ell) + a \pmod{p^{k+1}}.$$

Como $2x_k$ é primo com \mathfrak{p} , existe \mathfrak{t} tal que $2\mathfrak{t}x+k+\ell$ é múltiplo de \mathfrak{p} e então conseguimos obter o desejado. \square

Corolário: Seja $\mathfrak p$ um primo ímpar e $\mathfrak a$ inteiro não divisível por $\mathfrak p$. Então $\mathfrak a$ é resíduo quadrático módulo $\mathfrak p^k$, $k\geqslant 1$ inteiro, se, e somente se, $\mathfrak a$ é resíduo quadrático módulo $\mathfrak p$.

5 Problemas

Problema 1 Determine se as equaçõe modulares a seguir possuem solução:

- (a) $x^2 + 4x 3 \equiv 0 \pmod{51}$
- (b) $2x^2 4x + 1 \equiv 0 \pmod{13}$
- (c) $x^2 x + 1 \equiv 0 \pmod{91}$
- (d) $x^2 3x + 5 \equiv 0 \pmod{16}$
- (e) $x^2 6x + 7 \equiv 0 \pmod{15}$

Problema 2 Seja p um primo ímpar. Mostre que

$$\left(\frac{3}{p}\right) = \begin{cases} 1, \text{se } p \equiv \pm 1 \pmod{12}, \\ -1, \text{se } p \equiv \pm 5 \pmod{12}. \end{cases}$$

Problema 3 Existem inteiros m e n tais que

$$5m^2 - 6mn + 7n^2 = 1985$$
?

Problema 4 Seja p um primo maior do que 3. Se existe um inteiro a tal que $p|a^2-a+3$, prove que existe um inteiro b tal que $p|b^2-b+25$.

Problema 5 Seja p um primo. Mostre que existem x e y inteiros tais que $x^2 + y^2 + 1$ é divisível por p.

Problema 6 Seja $\mathfrak p$ um primo ímpar. Mostre que o menor não resíduo quadrático positivo de $\mathfrak p$ é menor que $\sqrt{\mathfrak p}+1$.

Problema 7 Sejam p um primo ímpar e c um inteiro que não é múltiplo de p. Prove que

$$\sum_{\alpha=0}^{p-1} \left(\frac{\alpha(\alpha+c)}{p} \right) = -1.$$

Problema 8 (Putnam 1991) Seja p um primo ímpar. Quantos elementos tem o conjunto

$$\{x^2|x\in\mathbb{Z}/p\mathbb{Z}\}\cap\{y^2+1|y\in\mathbb{Z}/p\mathbb{Z}\}$$
?

Problema 9 Prove que para todo n inteiro positivo, qualquer divisor primo de $n^4 - n^2 + 1$ é da forma 12k + 1, onde k é inteiro.

Problema 10 Sejam x e y inteiros positivos. Prove que 4xy - x - y não é um quadrado perfeito.

Problema 11 Seja p um número primo. Mostre que

- (a) Se p é da forma 4n + 1, então $p|n^n 1$.
- (b) Se p é da forma 4n-1, então $p|n^n+(-1)^{n+1}\cdot 2^n$.

Problema 12 Mostre que se x e y são inteiros, então $\frac{x^2-2}{2y^2+3}$ nunca é um número inteiro.

Problema 13 (Taiwan 1997) Seja $q=2^{2^n}+1$, onde n é um inteiro positivo. Prove que q é um primo se, e somente se, $3^{\frac{q-1}{2}} \equiv -1 \pmod{q}$.

Problema 14 (IMO 1996) Os inteiros positivos α e β são tais que os números $15\alpha + 16\beta$ e $16\alpha - 15\beta$ são ambos quadrados perfeitos. Qual é o menor valor possível que pode ter o menor destes dois números?

Problema 15 (Coréia 1999) Encontre todos os inteiros positivos n tais que $2^n - 1$ é divisível por 3 e $\frac{2^n - 1}{3}$ possui um múltiplo da forma $4m^2 + 1$ para algum inteiro positivo m.

Problema 16 Sejam $m, n \ge 3$ inteiros positivos ímpares. Prove que $2^m - 1$ não divide $3^n - 1$.

Problema 17 (Taiwan) Sejam \mathfrak{m} e \mathfrak{n} inteiros positivos tais que $\phi(5^{\mathfrak{m}}-1)=5^{\mathfrak{n}}-1$. Prove que $\mathrm{mdc}(\mathfrak{m},\mathfrak{n})>1$.

Problema 18 (Bulgária 1998) Sejam m e n inteiros positivos tais que $A = \frac{(m+3)^n+1}{3m}$ é inteiro. Prove que A é impar.

Problema 19 (Banco IMO 1998) Encontre todos os inteiros positivos n para os quais existe um inteiro m tal que $m^2 + 9$ é múltiplo de $2^n - 1$.

Problema 20 (OBM 2007) Para quantos números inteiros c, $-2007 \leqslant c \leqslant 2007$, existe um inteiro x tal que $x^2 + c$ é múltiplo de 2^{2007} ?

Problema 21 Seja $F_n=2^{2^n}+1$ o n-ésimo número de Fermat. Prove que para todo $n\geqslant 2$, todo fator primo de F_n é da forma $k\cdot 2^{n+2}+1$, onde k é inteiro.

Problema 22 (OBM-U 2010) Prove que se $10^{2n} + 8 \cdot 10^n + 1$ tem um fator primo da forma 60k + 7, onde n e k são inteiros não negativos, então n e k são pares.

Problema 23 (Ibero 2003) As sequências (a_n) e (b_n) são definidas como a seguir: $a_0 = 1, b_0 = 4$ e para $n \ge 0$,

$$a_{n+1}=a_n^{2001}+b_n, b_{n+1}=b_n^{2001}+a_n.$$

Prove que 2003 não divide nenhum dos termos destas sequências.

Problema 24 Seja α um inteiro positivo que não é quadrado perfeito. Então existem infinitos primos p para os quais $\left(\frac{\alpha}{p}\right) = -1$.

Problema 25 (Mathlinks Contest 2004) Sejam $a_1, a_2, \ldots, a_{2004}$ inteiros não negativos tais que $a_1^n + a_2^n + \ldots + a_{2004}^n$ é quadrado perfeito para todo inteiro positivo n. Qual é o maior número possível de a_i 's que são não nulos?

Problema 26 (Moldávia 2005) Sejam f, q funções dos inteiros positivos nos inteiros positivos tais que:

- (i) g é sobrejetiva.
- (ii) $2f(n)^2 = n^2 + g(n)^2$ para todo n inteiro positivo.
- (iii) $|f(n) n| \le 2004\sqrt{n}$ para todo n inteiro positivo.

Prove que f possui infinitos pontos fixos.

Problema 27 (Romênia 2004) Seja p um primo ímpar e defina

$$f(x) = \sum_{i=1}^{p-1} \left(\frac{i}{p}\right) x^{i-1}.$$

- (a) Prove que f é divisível por x-1, mas não por $(x-1)^2$ se, e somente se, $p \equiv 3 \pmod 4$.
- (b) Prove que se $p \equiv 5 \pmod{8}$, então f é divisível por $(x-1)^2$, mas não é divisível por $(x-1)^3$.

Problema 28 (IMO 2008) Prove que existem infinitos inteiros positivos n tais que $n^2 + 1$ possui um divisor primo maior do que $2n + \sqrt{2n}$.

Problema 29 (Ibero 2008) Seja $P(x) = x^3 + mx + n$ um polinômio com coeficientes inteiros com a seguinte propreidade: se x e y são inteiros tais que P(x) - P(y) é divisível por 107, então x - y também é divisível por 107. Prove que m é múltiplo de 107.

Problema 30 Seja p um primo da forma 4n + 1, n inteiro positivo. Calcule

$$\sum_{k=1}^{p-1} \left(\left\lfloor \frac{2k^2}{p} \right\rfloor - 2 \left\lfloor \frac{k^2}{p} \right\rfloor \right).$$