39° OLIMPÍADA BRASILEIRA DE MATEMÁTICA

2^a Fase – Nível Universitário

PRIMEIRO DIA

Problema 1.

Dizemos que um polinômio é *positivista* se ele pode ser escrito como o produto de dois polinômios não constantes com coeficientes reais maiores ou iguais a 0. Seja f(x) um polinômio não nulo tal que $f(x^n)$ é positivista para algum inteiro positivo n. Prove que f(x) é positivista.

Observação: O enunciado do problema 1, tal como proposto, está incorreto. Faltou adicionar a hipótese de que f tem grau maior que 1 (ou, alternativamente, que o coeficiente constante de f é não-nulo). A conclusão do problema, tal como proposto, é falsa para f(x) = cx, com c inteiro positivo. Os alunos que derem um contra-exemplo correto ganharão pontuação total, bem como os alunos que corrigirem o enunciado agregando uma hipótese como as mencionadas acima e a partir daí resolverem o problema. A banca da prova pede desculpas a todos pelo ocorrido.

Problema 2.

Fixados os inteiros positivos a e b, mostre que o conjunto dos divisores primos dos termos da sequência $a_n = a \cdot 2017^n + b \cdot 2016^n$ é infinito.

Problema 3.

Sejam $X = \{(x,y) \in \mathbb{R}^2 | y \ge 0, x^2 + y^2 = 1\} \cup \{(x,0), -1 \le x \le 1\}$ o bordo de um semi-disco fechado de raio 1.

a) Seja n>1 um inteiro e $P_1,P_2,\ldots,P_n\in X$. Prove que existe uma permutação $\sigma:\{1,2,\ldots,n\}\to\{1,2,\ldots,n\}$ tal que

$$\sum_{i=1}^{n} |P_{\sigma(j+1)} - P_{\sigma(j)}|^2 \le 8,$$

onde definimos $\sigma(n+1) = \sigma(1)$.

b) Determine os conjuntos $\{P_1, P_2, ..., P_n\} \subset X$ tais que, para qualquer permutação $\sigma: \{1, 2, ..., n\} \rightarrow \{1, 2, ..., n\}$,

$$\sum_{j=1}^{n} |P_{\sigma(j+1)} - P_{\sigma(j)}|^2 \ge 8.$$

(onde $\sigma(n+1) = \sigma(1)$).

39ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA

2ª Fase – Nível Universitário

SEGUNDO DIA

Problema 4.

Seja $(a_n)_{n\geq 1}$ uma sequência de termos (estritamente) positivos com $\lim a_n=0$ tal que, para um certo c>0 e para todo $n\geq 1$, $|a_{n+1}-a_n|\leq c\cdot a_n^2$. Prove que existe d>0 com $n\cdot a_n\geq d$, $\forall n\geq 1$.

Problema 5.

Sejam $d \le n$ inteiros positivos e A uma matriz real $d \times n$, a qual induz uma transformação linear de \mathbb{R}^n em \mathbb{R}^d por $v \to A.v$ (vemos os elementos de \mathbb{R}^n como vetores coluna). Seja $\sigma(A)$ o supremo sobre todos os subespaços W de dimensão d de \mathbb{R}^n de $\inf_{v \in W, |v| = 1} |A \cdot v|$.

Para cada $j \le d$, seja $r(j) \in \mathbb{R}^n$ o j-ésimo vector-linha de A, ou seja, $r(j) = A^t \cdot e_j$, onde e_j é o j-ésimo elemento da base canônica de \mathbb{R}^d . Prove que

$$\sigma(A) \leq \min_{i \leq d} d(r(i), \langle r(j), j \neq i \rangle) \leq \sqrt{n} \cdot \sigma(A).$$

Obs.: $|\cdot|$ denota a norma euclidiana; A^t é a matriz transposta de A; $d(r(i), \langle r(j), j \neq i \rangle)$ denota a distância de r(i) ao subespaço de \mathbb{R}^n gerado pelos vetores r(j), $1 \leq j \leq d$, $j \neq i$.

Problema 6.

Vamos considerar aqui *palavras* sobre o alfabeto $\{a,b\}$: sequências de a's e b's de comprimento finito. Escrevemos $u \le v$ se u é uma *subpalavra* de v, isto é, podemos obter u a partir de v apagando algumas letras de v (exemplo: $aba \le abbab$). Dizemos que uma palavra u *distingue* as palavras x e y se $u \le x$ mas não vale que $u \le y$ ou vice-versa (não vale que $u \le x$ mas $u \le y$).

Sejam m e l inteiros positivos. Dizemos que duas palavras x e y são m-equivalentes se não existe u de comprimento $\leq m$ que distingue x e y.

- a) Prove que se $2m \le l$, então existem duas palavras distintas x e y de comprimento l que são m-equivalentes.
- b) Prove que se 2m > l, então duas palavras distintas x e y de comprimento l não podem ser m-equivalentes.