Algebraic Numbers

Antonio Caminha M. Neto

December 13, 2017

Estas notas são um extrato dos capítulos 19 e 20 de [2].

1 Algebraic numbers over \mathbb{Q}

A complex number α is said to be **algebraic** over \mathbb{Q} if there exists a polynomial $f \in \mathbb{Q}[X] \setminus \{0\}$ such that $f(\alpha) = 0$. A complex number which is not algebraic over \mathbb{Q} is said to be **transcendental** over \mathbb{Q} . In this section and the next one we stick to the case of algebraic numbers.

Obviously, every rational number r, being a root of the polynomial $X - r \in \mathbb{Q}[X] \setminus \{0\}$, is algebraic over \mathbb{Q} . In turn, the coming example collects less trivial instances of algebraic numbers over \mathbb{Q} .

Example 1.1. Let $r \in \mathbb{Q}_+^*$ and $n \in \mathbb{N}$. If ω is an n-th root of unity, then $\sqrt[n]{r}\omega$ is algebraic over \mathbb{Q} , for such a number is a root of the nonzero polynomial with rational coefficients $X^n - r$.

Example 1.2. If $\alpha \neq 0$ is algebraic, then so are α^{-1} and α^2 .

If a complex number α is algebraic, the set

$$\mathcal{A}_{\alpha} = \{ f \in \mathbb{Q}[X] \setminus \{0\}; f(\alpha) = 0 \}$$

is nonempty by definition. Then, it is also nonempty the set of nonnegative integers $\{\partial f; f \in \mathcal{A}_{\alpha}\}$, so that there exists $p_{\alpha} \in \mathcal{A}_{\alpha}$, monic and of minimum degree. We thus have the following

Definition 1.3. Given a complex number α algebraic over \mathbb{Q} , a polynomial $p_{\alpha} \in \mathbb{Q}[X] \setminus \{0\}$, monic, of minimum degree and having α as a root is called a minimal polynomial for α .

The coming proposition and its corollaries collect the most important properties of minimal polynomials of algebraic numbers.

Proposition 1.4. If $\alpha \in \mathbb{C}$ is algebraic over \mathbb{Q} and p_{α} is the minimal polynomial of α , then:

(a) p_{α} is irreducible over \mathbb{Q} .

(b) If $f \in \mathbb{Q}[X]$ is such that $f(\alpha) = 0$, then $p_{\alpha} \mid f$ in $\mathbb{Q}[X]$.

In particular, p_{α} is uniquely determined by α .

Proof.

- (a) If we had $p_{\alpha} = fg$, with f and g being nonconstant and of rational coefficients, then the degrees of f and g would be less than that of p_{α} and at least one of them would have α as a root. In turn, this would contradict the minimality of the degree of p_{α} . Therefore, p_{α} is irreducible over \mathbb{Q} .
- (b) By the division algorithm, there exist polynomials $q, r \in \mathbb{Q}[X]$ such that

$$f(X) = p_{\alpha}(X)q(X) + r(X),$$

with r=0 or $0 \le \partial r < \partial p_{\alpha}$. If $r \ne 0$, then

$$r(\alpha) = f(\alpha) - p_{\alpha}(\alpha)q(\alpha) = 0,$$

with $\partial r < \partial p_{\alpha}$, and this would again be a contradiction to the minimality of the degree of p_{α} . Thus, r = 0 and, hence, $p_{\alpha} \mid f$ in $\mathbb{Q}[X]$.

Finally, if p_{α} and q_{α} were minimal polynomials for α , then item (b) would give $p_{\alpha} \mid q_{\alpha}$ in $\mathbb{Q}[X]$. However, since p_{α} and q_{α} are both monic and of the same degree, it would come that $p_{\alpha} = q_{\alpha}$.

Thanks to the former proposition, given $\alpha \in \mathbb{C}$ algebraic, we can refer to p_{α} as being the minimal polynomial of α .

Corollary 1.5. If $\alpha \in \mathbb{C}$ is algebraic and $f \in \mathbb{Q}[X] \setminus \{0\}$ is a monic, irreducible polynomial such that $f(\alpha) = 0$, then $f = p_{\alpha}$.

Proof. By the previous result, p_{α} divides f in $\mathbb{Q}[X]$. However, since f is irreducible, there must exist a nonzero rational number c such that $f = cp_{\alpha}$. Finally, since f and p_{α} are both monic, we must have c = 1.

Corollary 1.6. If $f \in \mathbb{Q}[X] \setminus \mathbb{Q}$ is irreducible, then f has no multiple roots.

Proof. We can assume, without any loss of generality, that f is monic. If some $\alpha \in \mathbb{C}$ is a multiple root of f, then α is also a root of the derivative f' of f. However, since $f \in \mathbb{Q}[X] \setminus \{0\}$ is monic and irreducible, Corollary 1.5 assures that it is the minimal polynomial of α . Therefore, Proposition 1.4 gives $f \mid f'$ in $\mathbb{Q}[X]$, which is a contradiction to the inequality $\partial f > \partial f'$.

Example 1.7 (IMO shortlist). Let f be a nonconstant polynomial of rational coefficients and α a real number such that $\alpha^3 - 3\alpha = f(\alpha)^3 - 3f(\alpha) = -1$. Prove that, for every positive integer n, one has

$$f^{(n)}(\alpha)^3 - 3f^{(n)}(\alpha) = -1,$$

where $f^{(n)}$ stands for the composite of f with itself, n times.

In the next example we shall use the fact (to be proved later) that if p is prime and $\omega = \operatorname{cis} \frac{2\pi}{n}$, then the minimal polynomial of ω is

$$p_{\omega}(X) = X^{p-1} + X^{p-2} + \dots + X + 1.$$

Example 1.8 (IMO). Let p be an odd prime. Compute how many are the p-element subsets of the set $\{1, 2, ..., 2p\}$ such that the sum of its elements is divisible by p.

Example 1.9 (Romania). Let $f \in \mathbb{Z}[X]$ be a monic polynomial, of odd degree greater than 1 and irreducible over \mathbb{Q} . Suppose also that:

- (a) f(0) is square-free.
- (b) The complex roots of f have modulus greater than or equal to 1.

Prove that the polynomial $F \in \mathbb{Z}[X]$, given by $F(X) = f(X^3)$, is also irreducible over \mathbb{Q} .

Problems - Section 1

- 1. Given $k, n \in \mathbb{N}$, prove that $\cos \frac{2k\pi}{n}$ and $\sin \frac{2k\pi}{n}$ are algebraic.
- 2. Let $\alpha \in \mathbb{C}$ be algebraic. If there exists $f \in \mathbb{Z}[X] \setminus \mathbb{Z}$ monic and such that $f(\alpha) = 0$, prove that $p_{\alpha} \in \mathbb{Z}[X]$.
- 3. (Brazil) Prove that the polynomial $f(X) = X^5 X^4 4X^3 + 4X^2 + 2$ does not admit any roots of the form $\sqrt[n]{r}$, with $r \in \mathbb{Q}$ and $n \in \mathbb{N}$, n > 1.
- 4. Let $\alpha \in \mathbb{C}$ be algebraic, with $\partial p_{\alpha} = n$, and define

$$\mathbb{Q}(\alpha) = \{ a_0 + a_1 \alpha + \dots + a_{n-1} \alpha^{n-1}; \ a_0, a_1, \dots, a_{n-1} \in \mathbb{Q} \}$$

= $\{ f(\alpha); \ f \in \mathbb{Q}[X], \ \text{with } f = 0 \text{ or } \partial f \leq n-1 \}.$

The purpose of this problem is to show that $\mathbb{Q}(\alpha)$ is a subfield of \mathbb{C} . To this end, do the following items:

- (a) Show that $\mathbb{Q}(\alpha)$ is closed for addition, subtraction and multiplication.
- (b) Given $\beta \in \mathbb{Q}(\alpha)$, show that there exists a single $f \in \mathbb{Q}[X]$ such that $\beta = f(\alpha)$, with f = 0 or $\partial f \leq n 1$.
- (c) For $\beta = f(\alpha) \in \mathbb{Q}(\alpha) \setminus \{0\}$, with $f \in \mathbb{Q}[X]$ such that $\partial f \leq n 1$, show that $\gcd(f, p_{\alpha}) = 1$. Then, conclude that $\frac{1}{\beta} \in \mathbb{Q}(\alpha)$.
- 5. Given $a, b, c \in \mathbb{Q}$ such that $a + b\sqrt[3]{2} + c\sqrt[3]{4} \neq 0$, show that there exist $x, y, z \in \mathbb{Q}$ for which

$$\frac{1}{a + b\sqrt[3]{2} + c\sqrt[3]{4}} = x + y\sqrt[3]{2} + z\sqrt[3]{4}.$$

Then, find x, y and z if a = b = 1, c = 2.

- 6. Let $\alpha \in \mathbb{C}$ be algebraic, with $\partial p_{\alpha} = n$, and $\mathbb{Q}(\alpha)$ be as in problem 4. Find all functions $\phi : \mathbb{Q}(\alpha) \to \mathbb{C}$ satisfying the following conditions, for all $u, v \in \mathbb{Q}(\alpha)$:
 - (i) $\phi(u+v) = \phi(u) + \phi(v)$.
 - (ii) $\phi(uv) = \phi(u)\phi(v)$.
- 7. If r is a nonzero rational and $\alpha \in \mathbb{C} \setminus \{0\}$ is algebraic, prove that $r\alpha$ is also algebraic.
- 8. If $\alpha, \beta \in \mathbb{C} \setminus \{0\}$ are algebraic, prove that so are $\alpha + \beta$, $\alpha\beta$ and α/β .
- 9. Let a_1, a_2, \ldots, a_n be natural numbers, and $\alpha = \sqrt{a_1} + \sqrt{a_2} + \cdots + \sqrt{a_n}$. If $\alpha \notin \mathbb{Z}$, prove that it is irrational.

2 Polynomials over \mathbb{Z}_p

It is a well known fact that for a prime $p \in \mathbb{Z}$, the set \mathbb{Z}_p of congruence classes modulo p can be furnished with operations of addition, subtraction, multiplication and division quite similar to those of \mathbb{C} . In turn, thanks to such a resemblance, essentially all of the concepts and results on polynomials studied so far remain true within the set $\mathbb{Z}_p[X]$ of polynomials with coefficients in \mathbb{Z}_p . Our purpose here is to make explicit comments on some similarities and differences between polynomials over \mathbb{Z}_p and over \mathbb{K} , with $\mathbb{K} = \mathbb{Q}$, \mathbb{R} or \mathbb{C} .

Given $f(X) = a_n X^n + \cdots + a_1 X + a_0 \in \mathbb{Z}[X]$, we define $\mathbb{Z}_p[X]$ to be the set of formal expressions \overline{f} of the form

$$\overline{f}(X) = \overline{a}_n X^n + \dots + \overline{a}_1 X + \overline{a}_0, \tag{1}$$

where $\overline{a}_0, \overline{a}_1, \dots, \overline{a}_n$ respectively denote the congruence classes of a_0, a_1, \dots, a_n modulo p. As before, such an \overline{f} is called a **polynomial** over \mathbb{Z}_p .

The correspondence $f \mapsto \overline{f}$ defines a map

$$\begin{array}{ccc} \pi_p: & \mathbb{Z}[X] & \longrightarrow & \mathbb{Z}_p[X] \\ f & \longmapsto & \overline{f} \end{array}$$

which is obviously surjective and is called the **canonical projection** of $\mathbb{Z}[X]$ onto $\mathbb{Z}_p[X]$. For $f, g \in \mathbb{Z}[X]$, it is immediate to verify that

$$\overline{f}(X) = \overline{g}(X) \text{ in } \mathbb{Z}_p[X]$$

$$\updownarrow$$

$$\exists h \in \mathbb{Z}[X]; \ f(X) = g(X) + ph(X) \text{ in } \mathbb{Z}[X].$$

Equivalently, letting

$$p\,\mathbb{Z}[X] = \{ph; \, h \in \mathbb{Z}[X]\},\,$$

we have

$$\overline{f} = \overline{0} \Leftrightarrow f \in p\mathbb{Z}[X].$$

We extend the operations of addition and multiplication in \mathbb{Z}_p to homonymous operations $+, \cdot : \mathbb{Z}_p[X] \times \mathbb{Z}_p[X] \to \mathbb{Z}_p[X]$ by setting, for $f, g \in \mathbb{Z}[X]$,

$$\overline{f} + \overline{g} = \overline{f + g}$$
 and $\overline{f} \cdot \overline{g} = \overline{fg}$.

As in $\mathbb{Z}[X]$, we say that a polynomial $\overline{f} \in \mathbb{Z}_p[X] \setminus \{\overline{0}\}$ as in (1) has **degree** n if $\overline{a}_n \neq \overline{0}$, i.e., if $p \nmid a_n$. More generally, if $f \in \mathbb{Z}[X] \setminus p\mathbb{Z}[X]$, then $\overline{f} \neq \overline{0}$ and $\partial \overline{f} \leq \partial f$.

Example 2.1. If $p \in \mathbb{Z}$ is a prime number and $k \in \mathbb{N}$, prove that $\binom{p^k}{j}$ is a multiple of p, for every integer $1 \le j < p^k$.

Example 2.2 (Romania). Prove that the number of odd binomial coefficients in the n-th line of Pascal's triangle is a power of 2.

In order to define the polynomial function associated to a polynomial $\overline{f} \in \mathbb{Z}_p[X]$, we have to take some care. Firstly, note that if $f \in \mathbb{Z}[X]$ and $a, b \in \mathbb{Z}$ satisfy $a \equiv b \pmod{p}$, then

$$f(a) \equiv f(b) \pmod{p};$$

on the other hand, if $\overline{f} = \overline{g}$ in $\mathbb{Z}_p[X]$, we saw above that there exists $h \in \mathbb{Z}[X]$ such that f(X) = g(X) + ph(X). Hence, for $a \in \mathbb{Z}$ we have

$$f(a) = g(a) + ph(a) \equiv g(a) \pmod{p}.$$

Given $\overline{f} \in \mathbb{Z}_p[X]$, the above comments allow us to define the **polynomial** function associated to $\tilde{f} : \mathbb{Z}_p \to \mathbb{Z}_p$ by setting, for $a \in \mathbb{Z}$,

$$\tilde{f}(\overline{a}) = \overline{g(a)},$$
 (2)

where $g \in \mathbb{Z}[X]$ is any polynomial for which $\overline{f} = \overline{g}$. Obviously, the image of \tilde{f} is a finite set, for \mathbb{Z}_p itself is finite. From now on, whenever there is no danger of confusion, we shall write (2) simply as

$$\overline{f}(\overline{a}) = \overline{f(a)}.$$

The coming example shows that, contrary to what happens with polynomials over \mathbb{Q} , \mathbb{R} or \mathbb{C} , the polynomial function associated to a nonzero polynomial over $\mathbb{Z}_p[X]$ can vanish identically. In other words, it is no longer valid that two distinct polynomials over \mathbb{Z}_p have distinct polynomial functions.

Example 2.3. The polynomial $f(X) = X^p - X \in \mathbb{Z}_p[X]$ is clearly a nonzero element of $\mathbb{Z}_p[X]$. On the other hand, letting $\overline{f} : \mathbb{Z}_p \to \mathbb{Z}_p$ denote its associated polynomial function, Fermat's little theorem gives

$$\overline{f}(\overline{a}) = \overline{a}^p - \overline{a} = \overline{a^p - a} = \overline{0}$$

for every $\overline{a} \in \mathbb{Z}_p$. Thus, \overline{f} vanishes identically.

Let $f \in \mathbb{Z}[X]$ and $a \in \mathbb{Z}$ be given. We say that $\overline{a} \in \mathbb{Z}_p$ is a root of \overline{f} provided $\overline{f}(\overline{a}) = \overline{0}$. An easy review of the proof of the root test shows that it continues to hold in $\mathbb{Z}_p[X]$. In particular, from the above example we obtain the following important result.

Proposition 2.4. In $\mathbb{Z}_p[X]$, we have

$$X^{p-1} - \overline{1} = (X - \overline{1})(X - \overline{2}) \dots (X - \overline{(p-1)}).$$

Proof. Since $\overline{1}, \overline{2}, \ldots, \overline{p-1}$ are roots of $X^{p-1} - \overline{1}$ in \mathbb{Z}_p (from the last example), we conclude that the polynomial $X^{p-1} - \overline{1}$ is divisible by $(X - \overline{1})(X - \overline{2}) \ldots (X - \overline{(p-1)})$ in $\mathbb{Z}_p[X]$. However, since both such polynomials are monic and have degree p-1, they are actually equal.

In $\mathbb{Z}_p[X]$ the following theorem is valid.

Teorema 2.5. If $p \in \mathbb{Z}$ is prime, then every polynomial $\overline{f} \in \mathbb{Z}_p[X] \setminus \mathbb{Z}_p$ can be written as a product of a finite number of irreducible polynomials over \mathbb{Z}_p . Moreover, such a decomposition of \overline{f} is unique up to association and reordering of the irreducible factors.

Example 2.6. If $p \in \mathbb{Z}$ is an odd prime and d is a positive divisor of p-1, then the algebraic congruence

$$x^{p-1} - 1 \equiv 0 \pmod{p} \tag{3}$$

has exactly $\varphi(d)$ roots of order d, pairwise incongruent modulo p. In particular, p has exactly $\varphi(p-1)$ primitive roots pairwise incongruent modulo p.

Example 2.7 (Miklós-Schweitzer). If p > 3 is a prime number satisfying $p \equiv 3 \pmod{4}$, prove that

$$\prod_{1 \le x \ne y \le \frac{p-1}{2}} (x^2 + y^2) \equiv 1 \pmod{p}.$$

Problems - Section 2

- 1. Let p > 2 be a given prime. Find, if any, the roots of $X^{p-1} + \overline{1} \in \mathbb{Z}_p[X]$.
- 2. Given $f \in \mathbb{Z}[X]$ and an integer root a of f, prove that $\overline{a} \in \mathbb{Z}_p$ is a root of $\overline{f} \in \mathbb{Z}_p[X]$. In particular, conclude that if $\overline{a}_1, \ldots, \overline{a}_k \in \mathbb{Z}_p$ are the roots of \overline{f} , then there exists $1 \leq j \leq k$ such that $a \equiv a_j \pmod{p}$.
- 3. Show that $f(X) = X^3 15X^2 + 10X 84 \in \mathbb{Z}[X]$ has no rational roots.
- 4. If $p \in \mathbb{Z}$ is prime and $f \in \mathbb{Z}[X]$, prove that $\overline{f}(X^p) = \overline{f}(X)^p$.

- 5. A polynomial $f \in \mathbb{Z}[X] \setminus \{0\}$ is **primitive** if the gcd of its nonzero coefficients is equal to 1. Prove that if $f, g \in \mathbb{Z}[X] \setminus \mathbb{Z}$ are primitive polynomials, then so is fg.
- 6. Let p > 2 be a prime number and $1 \le d \le p 1$ be an integer.
 - (a) If $d \nmid (p-1)$, show that $X^d \overline{1}$ has no roots in $\mathbb{Z}_p[X]$.
 - (b) If $d \mid (p-1)$, factorise $X^d \overline{1}$ in $\mathbb{Z}_p[X]$.
- 7. Let $p \geq 3$ be a prime number and, for $1 \leq j \leq p-1$, let $s_j(1, 2, \ldots, p-1)$ denote the j-th elementary symmetric sum of the natural numbers $1, 2, \ldots, p-1$. Prove that:
 - (a) For $1 \le j \le p 2$, we have $s_j(1, 2, ..., p 1) \equiv 0 \pmod{p}$.
 - (b) $s_{p-1}(1, 2, \dots, p-1) \equiv -1 \pmod{p}$.
- 8. If a, b and c are the complex roots of the polynomial $X^3 3X^2 + 1$, show that $a^n + b^n + c^n \in \mathbb{Z}$ for every $n \in \mathbb{N}$, and that such a sum is always congruent to 1 modulo 17.
- 9. (France) For a given $n \in \mathbb{N}$, let I_n denote the number of odd coefficients of the polynomial $(X^2 + X + 1)^n$.
 - (a) Compute I_{2^m} , for $m \in \mathbb{Z}_+$.
 - (b) Show that, for $m \in \mathbb{N}$, we have

$$I_{2^m-1} = \frac{2^{m+1} + (-1)^{m+1}}{3}.$$

10. Prove **Lucas' theorem**: given natural numbers $m \geq n$ and a prime number p, if

$$m = \sum_{j=0}^{k} m_j p^j$$
 and $\sum_{j=0}^{k} n_j p^j$

are the representations of m and n in base p, then

$$\binom{m}{n} \equiv \prod_{j=0}^{k} \binom{m_j}{n_j} \, (\operatorname{mod} p).$$

In particular, conclude that:

- (a) $p \mid {m \choose n}$ if and only if $m_j < n_j$ for some $0 \le j \le k$.
- (b) Exactly $(m_0+1)(m_1+1)\dots(m_k+1)$ binomial numbers of the form $\binom{m}{n}$ are not divisible by p.
- (c) No binomial number of the form $\binom{p^{k+1}-1}{n}$ is divisible by p.
- 11. Let p be a prime number and $k \in \mathbb{N}$. Prove that

$$\binom{p^k(p-1)}{l} \equiv \left\{ \begin{array}{l} (-1)^q \ (\operatorname{mod} p), \ \text{if} \ l = p^k q; \ 0 \leq q \leq p-1, \ q \in \mathbb{Z} \\ 0 \ (\operatorname{mod} p), \ \text{otherwise}. \end{array} \right.$$

3 Cyclotomic polynomials

The theory of polynomials over \mathbb{Z}_p , p prime, allows us to present some of the most elementary properties of the so-called *cyclotomic polynomials*; in particular, we will show that such polynomials are precisely the minimal polynomials of the complex roots of unity. As a byproduct of our study, we will use cyclotomic polynomials to prove a particular case of Dirichlet's theorem on primes in arithmetic progressions.

Given $n \in \mathbb{N}$, recall that the *primitive* n-th roots of unity are the complex numbers of the form ω_n^k , with $\omega_n = \operatorname{cis} \frac{2\pi}{n}$ and $1 \le k \le n$ being relatively prime with n. In particular, there are exactly $\varphi(n)$ primitive n-th roots of unity, where $\varphi: \mathbb{N} \to \mathbb{N}$ stands for the Euler function. Given $m, n \in \mathbb{N}$, whenever there is no danger of confusion we shall write simply (m,n) to denote the gcd of m and n.

Definition 3.1. For $n \in \mathbb{N}$, the n-th cyclotomic polynomial is the polynomial

$$\Phi_n(X) = \prod_{\substack{1 \le k \le n \\ (k,n)=1}} (X - \omega_n^k). \tag{4}$$

It follows from the above definition that Φ_n is monic with degree $\partial \Phi_n = \varphi(n)$. The coming proposition collects other elementary properties of Φ_n .

Proposition 3.2. For $n \in \mathbb{N}$, we have:

(a)
$$X^n - 1 = \prod_{0 < d \mid n} \Phi_d(X)$$
.

(b)
$$\Phi_n \in \mathbb{Z}[X]$$
.

(c)
$$\Phi_n(0) = 1$$
 for $n > 1$.

Proof.

(a) First of all, we have

$$\prod_{0 < d|n} \Phi_d(X) = \prod_{0 < d|n} \Phi_{n/d}(X) = \prod_{0 < d|n} \prod_{\substack{1 \le k \le n/d \\ (k, n/d) = 1}} (X - \omega_{n/d}^k)$$

$$= \prod_{0 < d|n} \prod_{\substack{1 \le k \le n/d \\ (k, n/d) = 1}} (X - \omega_n^{dk}).$$

Now, note that each integer $1 \le m \le n$ can be uniquely written as m = dk, with $d, k \in \mathbb{N}$ such that $0 < d \mid n$ and $\left(k, \frac{n}{d}\right) = 1$ (d is exactly $d = \gcd(m, n)$). Therefore, the last sum above is clearly equal to

$$\prod_{j=1}^{n} (X - \omega_n^j) = X^n - 1.$$

(b) Let us make induction on $n \in \mathbb{N}$, beginning with $\Phi_1(X) = X - 1 \in \mathbb{Z}[X]$. Given a natural number n > 1, assume, by induction hypothesis, that $\Phi_m \in \mathbb{Z}[X]$ for every integer $1 \le m < n$. Then, if

$$g(X) = \prod_{\substack{1 \le d < n \\ d \mid n}} \Phi_d(X),$$

we have $g \in \mathbb{Z}[X]$ and, by (a), $X^n - 1 = \Phi_n(X)g(X)$. Since g is monic (for we already know that each Φ_m is monic), the division algorithm guarantees that $\Phi_n \in \mathbb{Z}[X]$.

(c) For n=2 this is a direct computation. For n>2, arguing once more by induction, start by noticing that

$$X^{2} - 1 = \Phi_{1}(X)\Phi_{2}(X) = (X - 1)\Phi_{2}(X);$$

hence, $\Phi_2(X) = X + 1$ and $\Phi_2(0) = 1$. Let n > 1 and suppose, as induction hypothesis, that $\Phi_m(0) = 1$ for every integer $2 \le m < n$. Then, in the notations of the proof of (b), we have

$$g(0) = \Phi_1(0) \prod_{\substack{1 < d < n \\ d \mid n}} \Phi_d(0) = (-1) \prod_{\substack{1 < d < n \\ d \mid n}} \Phi_d(0) = -1,$$

and it follows from $X^n - 1 = \Phi_n(X)g(X)$ that

$$-1 = \Phi_n(0)g(0) = -\Phi_n(0),$$

Corollary 3.3. If $p \in \mathbb{Z}$ is prime, then

$$\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1.$$

Proof. Item (a) of the previous proposition gives

$$X^{p} - 1 = \Phi_{1}(X)\Phi_{p}(X) = (X - 1)\Phi_{p}(X),$$

so that

as wished.

$$\Phi_p(X) = X^{p-1} + X^{p-2} + \dots + X + 1.$$

We now need to establish a simple auxiliary result.

Lemma 3.4. Let $f, g \in \mathbb{Z}[X]$ and $p \in \mathbb{Z}$ be a prime number. If $\overline{g} \in \mathbb{Z}_p[X] \setminus \mathbb{Z}_p$ and $\overline{g}^2 \mid \overline{f}$ in $\mathbb{Z}_p[X]$, then $\overline{g} \mid \overline{f'}$ in $\mathbb{Z}_p[X]$.

Proof. If $h \in \mathbb{Z}[X]$ is such that $\overline{f} = \overline{g}^2 \overline{h}$ in $\mathbb{Z}_p[X]$, we know that there exists a polynomial $l \in \mathbb{Z}[X]$ such that

$$f(X) = g(X)^2 h(X) + pl(X)$$

in $\mathbb{Z}[X]$. Computing derivatives at both sides of this equality, we obtain

$$f'(X) = 2g(X)g'(X)h(X) + g(X)^{2}h'(X) + pl'(X)$$

in $\mathbb{Z}[X]$, and hence

$$\overline{f'}(X) = \overline{g}(X) \left(\overline{2} \, \overline{g'}(X) \overline{h}(X) + \overline{g}(X) \overline{h'}(X) \right)$$

in $\mathbb{Z}_p[X]$. Therefore, $\overline{g} \mid \overline{f'}$ in $\mathbb{Z}_p[X]$.

For our next result, recall that if ω is an n-th root of unity, then Proposition 1.4 guarantees that its minimal polynomial p_{ω} divides $X^n - 1$ in $\mathbb{Q}[X]$. Then, problem 2, page 3, assures that $p_{\omega} \in \mathbb{Z}[X]$.

Proposition 3.5. Let $n, p \in \mathbb{N}$ be such that p is prime and $p \nmid n$. If ω is an n-th root of unity, then $p_{\omega}(X) = p_{\omega^p}(X)$.

Proof. Let $\zeta = \omega^p$. Since both ω and ζ are roots of $X^n - 1$, item (b) of Proposition 1.4 shows that both p_{ω} and p_{ζ} divide $X^n - 1$. By contradiction, assume that $p_{\omega} \neq p_{\zeta}$. Then, the irreducibility of these polynomials assures, via Gauss' theorem, that $p_{\omega}p_{\zeta}$ divides $X^n - 1$ in $\mathbb{Z}[X]$, say

$$X^{n} - 1 = p_{\omega}(X)p_{\zeta}(X)u(X) \tag{5}$$

for some $u \in \mathbb{Z}[X]$.

If $g(X) = p_{\zeta}(X^p)$, then

$$q(w) = p_{\zeta}(\omega^p) = p_{\zeta}(\zeta) = 0$$

so that (once more by Proposition 1.4) p_{ω} divides g in $\mathbb{Z}[X]$. Let $v \in \mathbb{Z}[X]$ be such that $p_{\omega}v = g$. In $\mathbb{Z}_p[X]$, problem 4, page 6 gives

$$\overline{p}_{\omega}(X)\overline{v}(X) = \overline{g}(X) = \overline{p}_{\zeta}(X^p) = (\overline{p}_{\zeta}(X))^p$$

and Theorem 2.5 guarantees the existence of a monic and irreducible polynomial $\overline{h} \in \mathbb{Z}_p[X]$ such that $\overline{h} \mid \overline{p}_{\omega}, \overline{p}_{\zeta}$ in $\mathbb{Z}_p[X]$. It follows from (5) that $\overline{h}(X)^2 \mid (X^n - \overline{1})$ in $\mathbb{Z}_p[X]$, and the previous lemma gives that $\overline{h}(X) \mid \overline{n}X^{n-1}$ in $\mathbb{Z}_p[X]$. However, since \overline{h} is monic and $\overline{n} \neq \overline{0}$, by applying once again Theorem 2.5 we obtain $1 \leq l \leq n-1$ such that $\overline{h}(X) = X^l$ in $\mathbb{Z}_p[X]$. Hence, $\overline{h}(X) \nmid (X^n - \overline{1})$ in $\mathbb{Z}_p[X]$, which is a contradiction.

We can finally state and prove the desired result.

Teorema 3.6. If $\omega_n = \operatorname{cis} \frac{2\pi}{n}$, then $p_{\omega_n} = \Phi_n$. In particular, $\Phi_n \in \mathbb{Z}[X]$ is irreducible in $\mathbb{Q}[X]$.

Proof. Take $k \in \mathbb{N}$ such that k > 1 and gcd(k, n) = 1, and let $k = p_1 \dots p_l$, with p_1, \dots, p_l being primes not dividing n. Repeated applications of the previous proposition give us

$$p_{\omega_n} = p_{\omega_n^{p_1}} = p_{\omega_n^{p_1 p_2}} = \dots = p_{\omega_n^{p_1 \dots p_l}} = p_{\omega_n^k}.$$

In particular, the $\varphi(n)$ complex numbers ω_n^k , with $1 \le k \le n$ and $\gcd(k,n) = 1$, are distinct roots of p_{ω_n} , so that

$$\partial p_{\omega_n} \ge \varphi(n) = \partial \Phi_n$$
.

However, since Φ_n is monic, has integer (thus rational) coefficients and ω_n as a root, the definition of minimal polynomial assures that $p_{\omega_n} = \Phi_n$.

Example 3.7 (Dirichlet). If $n \in \mathbb{N}$, then the arithmetic progression $1, 1+n, 1+2n, \ldots$ contains infinitely many primes.

Example 3.8. For each prime number p, let $g(p) \in \mathbb{N}$ denote the least positive prime root modulo p. Then, the function $p \mapsto g(p)$ is unbounded.

Problems - Section 3

- 1. Let $p, k \in \mathbb{N}$ be given, with p being prime. Compute Φ_{p^k} explicitly.
- 2. If m and n are distinct naturals, prove that Φ_m and Φ_n have no nonconstant common factors in $\mathbb{C}[X]$. In particular, $\Phi_m \neq \Phi_n$.
- 3. Let n > 1 be a natural number and d be the product of the distinct prime factors of n. Show that $\Phi_n(X) = \Phi_d(X^{n/d})$.
- 4. (England) The set $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\}$ contains several arithmetic progressions. Given an integer k > 2, prove that it contains an arithmetic progression of k terms which is not contained in any arithmetic progression of k + 1 terms of the same set.
- 5. Let $a, n \in \mathbb{N}$, with a > 1 and n odd. Prove that the algebraic congruence $x^n \equiv a \pmod{p}$ has a solution for infinitely many primes p.
- 6. Let a be a natural number which is not a perfect square. Prove that there are infinitely many prime numbers p for which a is a non-quadratic residue modulo p.
- 7. Let $a, b \in \mathbb{Z}$ be such that for each $n \in \mathbb{N}$ there exists $c \in \mathbb{Z}$ for which $n \mid (c^2 + ac + b)$. Prove that the equation $x^2 + ax + b = 0$ has integer roots.

4 Algebraic numbers over \mathbb{Z}_p

This section is somewhat more abstract that the previous ones, for we extend the concept of algebraic number to consider algebraic numbers over \mathbb{Z}_p , for some prime number p. However, the payoff will be worth the effort, for, given $n \in \mathbb{N}$, we will be able to compute the exact number of irreducible polynomials over \mathbb{Z}_p and having degree n.

We depart from a naive though profitable idea, namely, that there exists a number set Ω_p containing \mathbb{Z}_p that plays, for \mathbb{Z}_p , the same role as \mathbb{C} plays for \mathbb{Q} . We start by formalizing the concept of field.

Definition 4.1. A field is a nonempty set \mathbb{K} , furnished with operations $+, \cdot : \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ having the following properties:

- (a) + and \cdot are commutative and associative, and \cdot is distributive with respect to +.
- (b) There exist elements $0, 1 \in \mathbb{K}$, with $0 \neq 1$, such that a + 0 = a and $a \cdot 1 = a$, for every $a \in \mathbb{K}$.
- (c) For every $a \in \mathbb{K}$, there exists an element $-a \in \mathbb{K}$ such that a + (-a) = 0.
- (d) For every $a \in \mathbb{K} \setminus \{0\}$, there exists an element $a^{-1} \in \mathbb{K}$ such that $a \cdot a^{-1} = 1$.

The reader has certainly realized what we mean by *commutative*, associative and *distributive* from his/her previous experience. Nevertheless, let us explain all that from first principles. Commutativity in item (a) means that

$$a+b=b+a$$
 and $a \cdot b=b \cdot a$,

whereas associativity stands for

$$(a+b)+c=a+(b+c)$$
 and $(a \cdot b) \cdot c=a \cdot (b \cdot c)$,

for all $a, b, c \in \mathbb{K}$. In turn, the distributivity of \cdot with respect to + is exactly what one expects:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
,

with the right hand side being a shorthand for the more precise (though somewhat cumbersome) expression $(a \cdot b) + (a \cdot c)$.

Thus, we surely have that \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields, and problem 4, page 3 shows that so is $\mathbb{Q}(\alpha)$, for every $\alpha \in \mathbb{C}$ algebraic over \mathbb{C} . Moreover, in all of these cases, the elements 0 and 1 of item (b) in the above definition are the usual complex numbers 0 and 1, and this is the reason why, for a general field \mathbb{K} , we also denote them by 0 and 1. A similar remark holds for -a and a^{-1} , i.e., we are simply adopting the same notation we use for the additive (resp. multiplicative) inverses of elements of \mathbb{C} (resp. of $\mathbb{C} \setminus \{0\}$).

Another class of examples of fields we have been dealing with is that of the finite fields \mathbb{Z}_p , with $p \in \mathbb{Z}$ prime. In this case, however, we shall stick to the

usage of writing $\overline{0}$ and $\overline{1}$ whenever convenient, in order to avoid any possibility of confusion with $0, 1 \in \mathbb{Z}$.

Back to a general field \mathbb{K} , the *cancellation laws* for addition and multiplication hold:

$$a+c=b+c \Rightarrow a=b$$
 and $a\cdot c=b\cdot c, c\neq 0 \Rightarrow a=b.$

Indeed,

$$a + c = b + c \Rightarrow (a + c) + (-c) = (b + c) + (-c)$$

 $\Rightarrow a + (c + (-c)) = b + (c + (-c))$
 $\Rightarrow a + 0 = b + 0 \Rightarrow a = b$,

and likewise for the multiplication.

As it happens within \mathbb{C} , whenever there is no danger of confusion we shall write ab instead of $a \cdot b$, to denote the product of elements a and b of a general field \mathbb{K} .

We could have developed most of the theory of polynomials by considering the set $\mathbb{K}[X]$ of polynomials over (or with coefficients in) an arbitrary field \mathbb{K} , with operations $+, \cdot : \mathbb{K}[X] \times \mathbb{K}[X] \to \mathbb{K}[X]$ extending those of \mathbb{K} . Taking for granted the (harmless) assumption that we have done that, we now have at our disposal the following concepts and facts, whose validities the reader can easily check:

- 1. If $f, g \in \mathbb{K}[X]$ are such that fg = 0 (the identically zero polynomial), then f = 0 or g = 0.
- 2. The notions of degree (for nonzero polynomials) and roots for polynomials over \mathbb{K} remain true, unchanged. Likewise, $\partial(fg) = \partial f + \partial g$ if $f, g \neq 0$ and $\partial(f+g) \leq \max\{\partial f, \partial g\}$ if $f+g \neq 0$.
- 3. The division algorithm, the root test and Lagrange's theorem on the number of distinct roots of a nonzero polynomial also continue to hold, with identical proofs.
- 4. The concept of greatest common divisor for nonzero polynomials over \mathbb{K} is a direct extension from that for polynomials over \mathbb{Q} , and Bézout's theorem is also true, with exactly the same proof.
- 5. Another concept that extends in a likewise manner from $\mathbb{Q}[X]$ is that of irreducible polynomial $f \in \mathbb{K}[X]$. We also have unique factorisation.

A major gap on extending the theory for polynomials over arbitrary fields is fulfilled by the coming result, which will be assumed without proof (we refer the interested reader to [1] or [3]).

Teorema 4.2. Given an arbitrary field \mathbb{K} , there exists another field Ω containing \mathbb{K} , whose operations extend those of \mathbb{K} and such that every $f \in \mathbb{K}[X]$ has at least one root in Ω .

The field Ω plays the role of \mathbb{C} for \mathbb{K} . We refer to the property of Theorem 4.2 by saying that Ω is an **algebraically closed** field containing \mathbb{K} . Also as with \mathbb{C} , one now proves that if $f \in \mathbb{K}[X] \setminus \{0\}$ has degree n, then there exists $a \in \mathbb{K}$ (the leading coefficient of f) and $\alpha_1, \ldots, \alpha_n \in \Omega$ such that

$$f(X) = a(X - \alpha_1)(X - \alpha_2) \dots (X - \alpha_n).$$

The equality above is the **factorised form** of f over Ω .

We can now define, exactly as was done in Section 1, what one means for an element $\alpha \in \Omega$ to be algebraic over \mathbb{K} , and consider its minimal polynomial $p_{\alpha} \in \mathbb{K}[X] \setminus \{0\}$ as was done for $\alpha \in \mathbb{C}$ algebraic over \mathbb{Q} . This way, Proposition 1.4 and Corollary 1.5 remain true, unchanged.

We now restrict our attention to $\mathbb{K} = \mathbb{Z}_p$, and write Ω_p to denote the field Ω of Theorem 4.2. We first recall the result of problem 4, page 6, which we write in the following form:

$$f(X^p) = f(X)^p, \ \forall \ f \in \mathbb{Z}_p[X]. \tag{6}$$

We shall also need the following auxiliary result.

Lemma 4.3. Let $f \in \Omega_p[X] \setminus \{0\}$ be given. If $\alpha \in \Omega_p$ is a root of f, then:

- (a) α^p is also a root of f.
- (b) There exists a natural number $m \leq \partial f$ such that α is a root of $X^{p^m} X$.

Proof

- (a) It follows from (6) that $f(\alpha^p) = f(\alpha)^p = \overline{0}^p = \overline{0}$.
- (b) Iterating the result of (a), we conclude that α , α^p , α^{p^2} , ... are roots of f. Since it has at most ∂f distinct roots, we conclude that there exist integers $0 \le k < l \le \partial f$ for which $\alpha^{p^k} = \alpha^{p^l}$. Therefore,

$$\overline{0} = \alpha^{p^l} - \alpha^{p^k} = (\alpha^{p^{l-k}})^{p^k} - \alpha^{p^k} = (\alpha^{p^{l-k}} - \alpha)^{p^k},$$

where we have used the result of Example 2.1 in the last equality above. It comes that $\alpha^{p^{l-k}} - \alpha = 0$, and α is a root of $X^{p^m} - X$, with $m = l - k \le \partial f$. \square

We are now in position to prove the following

Proposition 4.4. Let p be prime and $\alpha \in \Omega_p$ be algebraic over \mathbb{Z}_p . If $\partial p_{\alpha} = n$, then:

- (a) α is a root of $X^{p^n} X$.
- (b) α is not a root of $X^{p^m} X$, for any positive integer m < n.

Proof. We already know, from the previous lemma, that α is a root of $X^{p^m} - X$, for any positive integer $m \leq n$. Now, let

$$\Phi: \underbrace{\mathbb{Z}_p \times \mathbb{Z}_p \times \ldots \times \mathbb{Z}_p}_{n \text{ times}} \longrightarrow \Omega_p$$

be defined by

$$\Phi(\overline{a}_0, \overline{a}_1, \dots, \overline{a}_{n-1}) = \overline{a}_0 + \overline{a}_1 \alpha + \dots + \overline{a}_{n-1} \alpha^{n-1}.$$

We claim that Φ is injective and each $\beta \in \text{Im}(\Phi)$ is a root of $X^{p^m} - X$. Indeed, if

$$\Phi(\overline{a}_0, \overline{a}_1, \dots, \overline{a}_{n-1}) = \Phi(\overline{b}_0, \overline{b}_1, \dots, \overline{b}_{n-1}),$$

for distinct n-tuples $(\overline{a}_0, \overline{a}_1, \dots, \overline{a}_{n-1})$ and $(\overline{b}_0, \overline{b}_1, \dots, \overline{b}_{n-1})$ in the domain of Φ , then

$$(\overline{a}_0 - \overline{b}_0) + (\overline{a}_1 - \overline{b}_1)\alpha + \dots + (\overline{a}_{n-1} - \overline{b}_{n-1})\alpha^{n-1} = \overline{0},$$

so that α would be a root of the nonzero polynomial $(\overline{a}_0 - \overline{b}_0) + (\overline{a}_1 - \overline{b}_1)X + \cdots + (\overline{a}_{n-1} - \overline{b}_{n-1})X^{n-1}$ of $\mathbb{Z}_p[X]$. Since $\partial p_{\alpha} = n$, this is a contradiction.

For the second part, let $\hat{\beta} = \overline{a}_0 + \overline{a}_1 \alpha + \dots + \overline{a}_{n-1} \alpha^{n-1}$. The result of Example 2.1 gives, together with Fermat's little theorem and $\alpha^{p^m} = \alpha$, gives

$$\beta^{p^m} = \left(\overline{a}_0 + \overline{a}_1 \alpha + \dots + \overline{a}_{n-1} \alpha^{n-1}\right)^{p^m}$$

$$= \overline{a}_0^{p^m} + \overline{a}_1^{p^m} \alpha^{p^m} + \dots + \overline{a}_{n-1}^{p^m} \alpha^{(n-1)p^m}$$

$$= \overline{a}_0 + \overline{a}_1 \alpha + \dots + \overline{a}_{n-1} \alpha^{n-1}$$

$$= \beta$$

Let \mathcal{R}_m stand for the set of roots of $X^{p^m} - X$ in Ω_p . The above claims then assure that $|\mathcal{R}_m| \geq p^n$, so that $p^m \geq p^n$ and, hence, $m \geq n$. Since $m \leq n$, we then get m = n, and items (a) and (b) follow at once.

A direct consequence of this proposition is the coming

Corollary 4.5. Let p be prime and $\alpha \in \Omega_p$ be algebraic over \mathbb{Z}_p . If $\partial p_{\alpha} = n$, then $p_{\alpha} \mid (X^{p^n} - X)$ in $\mathbb{Z}_p[X]$.

Proof. This follows from the previous result, together with the analogue of Proposition 1.4 in our setting. \Box

Another consequence is collected as the next result.

Lemma 4.6. Let $f \in \mathbb{Z}_p[X] \setminus \mathbb{Z}_p$ be irreducible and of degree d. If $f \mid (X^{p^n} - X)$, then $d \mid n$.

Proof. If $\alpha \in \Omega_p$ is a root of f, then $f = p_{\alpha}$, and the previous corollary guarantees that $f \mid (X^{p^d} - X)$ and $f \nmid (X^{p^k} - X)$, for every positive integer k < d. Since $f \mid (X^{p^n} - X)$, we conclude that $d \leq n$.

Now, let n = d + t and write

$$X^{p^{n}} - X = X^{p^{d+t}} - X = (X^{p^{d}})^{p^{t}} - X^{p^{t}} + X^{p^{t}} - X$$
$$= (X^{p^{d}} - X)^{p^{t}} + X^{p^{t}} - X.$$

It readily follows from this equality that

$$\gcd(X^{p^n} - X, X^{p^d} - X) = \gcd(X^{p^t} - X, X^{p^d} - X).$$

Assume that n = dq + r, with 0 < r < d. Iterating the gcd equality above, we get

$$\gcd(X^{p^n} - X, X^{p^d} - X) = \gcd(X^{p^r} - X, X^{p^d} - X).$$
(7)

Since f divides the left hand side, it also divides the right hand side. In particular, $f \mid (X^{p^r} - X)$, which is a contradiction.

We can finally state and prove our main result, for which we let

 $a_n = \#\{\text{monic}, \text{ pairwise distinct irreducible polynomials of degree } n \text{ in } \mathbb{Z}_p[X]\}.$

Also, if $a_n > 0$, we write $f_{n1}, f_{n2}, \ldots, f_{na_n}$ to denote such polynomials.

Teorema 4.7. Let p be prime and $n \in \mathbb{N}$. Then,

$$X^{p^n} - X = \prod_{0 < d|n} f_{d1}(X) \dots f_{da_d}(X), \tag{8}$$

with the product $f_{d1} \dots f_{da_d}$ taken as 1 if $a_d = 0$.

Proof. Unique factorisation assures that $X^{p^n} - X$ is the product of finitely many irreducible polynomials, which can all be assumed to be monic.

If f is one such polynomial, with $\partial f = d$, the previous lemma shows that $d \mid n$, so that f is one of the polynomials in the right hand side of (8). Conversely, if $0 < d \mid n$, $1 \le j \le a_d$ and $\alpha \in \Omega_p$ is a root of f_{dj} , then $f_{dj} = p_{\alpha}$, and Corollary 4.5 guarantees that $f_{dj} \mid (X^{p^d} - X)$ in $\mathbb{Z}_p[X]$. However, since $d \mid n$, the argument in the proof of the previous lemma leading to (7) shows that $(X^{p^d} - X) \mid (X^{p^n} - X)$ in $\mathbb{Z}_p[X]$. Therefore, $f_{dj} \mid (X^{p^n} - X)$ in $\mathbb{Z}_p[X]$.

Example 4.8. If p is prime and $n \in \mathbb{N}$, show that $a_n = \frac{1}{n} \sum_{0 < d|n} \mu(\frac{n}{d}) p^d > 0$.

Problems - Section 4

1. Let p be prime and $n \in \mathbb{N}$. If $0 < d \mid n$, then $X^{p^n} - X$ has an irreducible factor of degree d.

- 2. Let p be prime and, for $n \in \mathbb{N}$, let \mathcal{R}_n denote the set of roots of $X^{p^n} X$ in Ω_p . Show that \mathcal{R}_n is a subfield of Ω_p containing \mathbb{Z}_p .
- 3. In the notations of the statement of Theorem 4.7, show that $a_2 = \binom{p}{2}$ and

$$f_{21}(X) \dots f_{2a_2}(X) = (X^p - X)^{p-1} + \overline{1}.$$

4. Let $\mathbb K$ be any field. Prove that $\mathbb K[X]$ has infinitely many irreducible polynomials.

References

- [1] R. Ash. Basic Abstract Algebra: for Graduate Students and Advances Undergraduates. Mineola, Dover, 2006.
- [2] A. Caminha. An Excursion Through Elementary Mathematics III. Springer Nature, Cham, 2018.
- [3] C. R. Hadlock. Field Theory and its Classical Problems. Washington, MAA, 2000.