Circunferências tangentes entre si e o Lema da estrela da morte

Semana Olímpica/2018 - Nível 2

Prof. Armando Barbosa

Maceió, 25 de janeiro de 2018

1 Exercícios resolvidos no material

Problema 1 $(M\acute{e}xico/2016)$ Sejam Γ_1 e Γ_2 duas circunferências tangentes externamente no ponto S de tal forma que o raio de Γ_2 é o triplo do raio de Γ_1 . Seja ℓ uma reta tangente a Γ_1 no ponto $P \neq S$ e a Γ_2 no ponto $Q \neq S$. Seja T um ponto em Γ_2 tal que QT é diâmetro de Γ_2 . Seja R o ponto onde a bissetriz interna do $\angle SQT$ encontra o segmento ST. Prove que QR = RT.

Problema 2 Na questão anterior, prove que os pontos $P, S \in T$ são colineares.

Problema 3 (OBM/2015 - N2) Seja ABCD um quadrilátero convexo. As retas AB e CD cortam-se em E e as retas BC e AD cortam-se em F. Sejam P e Q os pés das perpendiculares de E sobre as retas AD e BC, respectivamente, e sejam R e S os pés das perpendiculares de F sobre as retas AB e CD, respectivamente. As retas ER e FS cortam-se em T.

- a) Mostre que há uma circunferência que passa pelos pontos $E,\,F,\,P,\,Q,\,R$ e S.
- b) Prove que (RST) é tangente a (QRB).

Lema: (Estrela da morte) Dadas duas circunferências tangentes internamente entre si em A. seja \overline{BC} uma corda da maior circunferência tangente a menor no ponto D. Então, temos que $\angle BAD = \angle CAD$.

2 Outros exercícios no material

Problema 4 (Balkan/2012) Sejam A, B e C pontos numa circunferência Γ de centro O, tais que $\angle ABC > 90^\circ$. Seja D o ponto de interseção da reta AB com a reta, perpendicular a AC, que passa por C. Seja ℓ a reta que passa por D e é perpendicular a AO. Seja E o ponto de interseção de ℓ com a reta AC. Seja F a interseção de ℓ com Γ , que fica entre D e E. Prove que os circuncírculos dos triângulos BFE e CFD são tangentes em F.

Problema 5 (Bielorússia/2016) Seja P o ponto onde o A-exincírculo ω_A do triângulo ABC toca o lado \overline{BC} . Sejam I_1 e I_2 os centros do A-exincírculos em relação aos triângulos $\triangle ABP$ e $\triangle ACP$, respectivamente. Prove que (I_1I_2P) é tangente a ω_A .