Inversão

Deborah Barbosa Alves deborah.alves@gmail.com

- **Problema 1.** Seja Γ uma circunferência e P um ponto externo a Γ. As tangentes a Γ por P tocam Γ em A e B. Sejam C e D pontos em Γ tal que P está na reta CD e seja M o ponto médio de AB. Prove que $\angle CMB = \angle DMB$.
- **Problema 2.** Seja ABCD um quadrilátero bicêntrico de incentro I e circuncentro O, e seja X a interseção das diagonais AC e BD. Prove que I, O e X são colineares.
- **Problema 3.** O incírculo de um triângulo ABC toca os lados BC, CA, AB nos pontos A_1 , B_1 , C_1 respectivamente. Sejam A_0 , B_0 , C_0 os pontos médios de B_1C_1 , A_1C_1 , A_1B_1 respectivamente. Prove que o incentro de ABC, o circuncentro de ABC e o circuncentro de $A_0B_0C_0$ são colineares.
- Problema 4. (Construção da Simediana) Seja ABC um triângulo de circuncírculo Γ. Seja P o ponto de interseção das retas tangentes a Γ tangentes em B e C. Prove que AP é a simediana de ABC correspondente ao vértice A.
- **Problema 5.** Seja ABC um triângulo e S uma circunferência tangente aos lados CA e CB em D e E, respectivamente, e tangente internamente ao circuncírculo do $\triangle ABC$. Prove que o incentro do $\triangle ABC$ é o ponto médio de DE.
- **Problema 6.** (RMMS 2011) Um triângulo ABC está inscrito num círculo ω . Uma reta variável l paralela a BC intersecta os segmentos AB e AC nos pontos D e E respectivamente, e intersecta ω nos pontos K e L (onde D está entre K e E). O círculo γ_1 é tangente aos segmentos KD e BD e também tangente a ω , enquanto o círculo γ_2 é tangente aos segmentos LE e CE e também tangente a ω . Determine o lugar geométrico, enquanto l varia, do encontro das tangentes internas comuns a γ_1 e γ_2 .
- **Problema 7.** Considere dois círculos Γ e Γ_1 tangentes internamente no ponto O (Γ está dentro de Γ_1). Por um ponto A no círculo Γ traçamos uma tangente que corta o círculo Γ_1 nos pontos B e C. Prove que a reta OA é bissetriz do ângulo $\angle BOC$.
- **Problema 8.** (Teorema de Ptolomeu) Sejam A, B, C, D são quatro pontos coplanares, então $AB \cdot CD + AD \cdot BC \ge AC \cdot BD$, com igualdade se, e somente se, A, B, C, D são colineares ou concíclicos.
- **Problema 9.** Seja ABC um triângulo e M um ponto no plano. As retas que passam pelo ortocentro H de ABC e são perpendiculares a MA, MB, MC intersectam BC, CA, AB em P, Q, R respectivamente. Prove que P, Q, R são colineares e essa reta é perpendicular a MH.
- **Problema 10.** Seja ABCD um quadrilátero convexo. As retas paralelas a AD e CD que passam pelo ortocentro H do triângulo ABC intersectam AB e BC respectivamente em P e Q. Prove que a reta perpendicular a PQ que passa por H também passa pelo ortocentro do triângulo ACD
- **Problema 11.** Seja ABC um triângulo com ortocentro H. Sejam D, E, F os pontos médios dos lados BC, AC, AB respectivamente. Seja P a interseção de BC com a perpendicular a HD traçada por A, Q a interseção de AC com a perpendicular a HE traçada por B, R a interseção de AB com a perpendicular a HF traçada por C. Prove que P, Q, R são colineares e essa reta é perpendicular a reta de Euler do triângulo ABC.
- **Problema 12.** Seja ABC um triângulo que não é isósceles e H seu ortocentro. Seja A_1, B_1, C_1 os pés das alturas AH, BH, CH respectivamente. Seja A_2, B_2, C_2 as projeções de H nos segmentos B_1C_1, A_1C_1, A_1B_1 respectivamente. Prove que
 - i) Os circuncírculos dos triângulos HA_1A_2 , HB_1B_2 , HC_1C_2 tem um segundo ponto de interseção que não é H
- ii) Os circuncírculos dos triângulos HAA_2 , HBB_2 , HCC_2 tem um segundo ponto de interseção que não é H