Lista - Estimativas e Desigualdades

Semana Olimpíca/2018 - Nível 2

Prof. Armando

25 de janeiro de 2019

1 Lista de ideias

- Funções do 2° grau (ou graus maiores)
- \bullet Desigual dades básicas $(M.Q.\geqslant M.A.\geqslant M.G.\geqslant M.H.$ ou Cauchy)
- Trigonometria
- Somas telescópicas
- Racionalização/"Desracionalização"
- E etc..

2 Questões resolvidas no material

Problema 1 a) Mostre que

$$\left(x^2 + \frac{x}{2}\right)^2 < 1 + x + x^2 + x^3 + x^4 \leqslant \left(x^2 + \frac{x}{2} + 1\right)^2$$

b) Determine todas as soluções inteiras de $y^2 = 1 + x + x^2 + x^3 + x^4$.

Problema 2 (OCM/1998) Prove que não existem inteiros positivos a e b tais que $\frac{b^2+b}{a^2+a}=4$.

Problema 3 Encontre os valores mínimo e máximo de $T = a\cos\theta + bsen\theta$, com $0 \le \theta \le 2\pi$, sendo a e b reais positivos.

Problema 4 Prove que, dentre quaisquer cinco números reais y_1, y_2, y_3, y_4 e y_5 , existem dois que satisfazem $0 \le \frac{y_i - y_j}{1 + y_i \cdot y_i} \le 1$.

Problema 5 Sejam x, y e z inteiros positivos tais que x + y + z = 60. Determine o valor máximo de xy^2z^3 .

Problema 6 (OCM/2011) Qual é o valor mínimo da expressão $\frac{126+14x^4}{2011x^2}$ no conjunto dos números reais diferentes de zero?

Problema 7 Mostre que

$$2\sqrt{101} - 2 < \sum_{n=1}^{100} \frac{1}{\sqrt{n}} < 20$$

3 Outros problemas

Problema 8 (APMO/2011) Sejam $a, b \in c$ inteiros positivos. Prove que é impossível ter os três números $a^2 + b + c$, $b^2 + a + c$ e $c^2 + a + b$ sendo todos quadrados perfeitos.

Problema 9 (Rioplatense/TST - Fortaleza/2014) Sejam a e b números reais positivos. Prove a seguinte desigualdade

$$a^{2} + b^{2} + 1 \geqslant a \cdot \sqrt{b^{2} + 1} + b \cdot \sqrt{a^{2} + 1}$$

Problema 10 (Rioplatense/TST - Fortaleza/2012) Seja n um inteiro positivos. Determine todos os números reais x_1, x_2, \dots, x_n que satisfazem a relação:

$$\sqrt{x_1 - 1^2} + 2 \cdot \sqrt{x_2 - 2^2} + \dots + n \cdot \sqrt{x_n - n^2} = \frac{1}{2} \cdot (x_1 + x_2 + \dots + x_n)$$

Problema 11 (Turquia/1998) Seja (a_n) uma sequência de números reais definidas por:

$$\begin{cases} a_1 = t \\ a_{n+1} = 4a_n (1 - a_n) & \forall n \geqslant 1 \end{cases}$$

Para quantos valores distintos de t teremos $a_{1998} = 0$?

Problema 12 (Rússia/2009) Sejam $a, b \in c$ três números reais que satisfazem

$$\begin{cases} (a+b) \cdot (b+c) \cdot (c+a) = abc \\ (a^3+b^3) \cdot (b^3+c^3) \cdot (c^3+a^3) = a^3b^3c^3 \end{cases}$$

Prove que abc = 0.

Problema 13 (Rioplatense/2012) Dizemos que um inteiro positivo n é apocalíptico se, entre seus divisores positivos, há seis cuja soma é igual a 3528. Por exemplo, 2012 é apocalíptico, pois seus seis divisores 1, 2, 4, 503, 1006 e 2012 somados resultam em 3528. Determine o nenor inteiro positivo apocalíptico.

Problema 14 (Cone Sul/TST - 2018)

- a) Seja x um número real com $x \ge 1$. Prove que $x^3 5x^2 + 8x 4 \ge 0$.
- b) Sejam $a, b \ge 1$ números reais. Determine o valor mínimo da expressão ab(a+b-10) + 8(a+b). Determine também os pares de números reais (a, b) que fazem com que essa expressão seja igual a esse valor mínimo.

Problema 15 (Lusofonia/2016) Suponha que um número real α é raiz de um polinômio com coeficientes inteiros $P(x) = a_n \cdot x^n + \cdots + a_1 \cdot x + a_0$. Considere, então, $G = |a_n| + \cdots + |a_1| + |a_0|$. Dizemos que G é um gingado de α . Por exemplo, como 2 é raíz de $P(x) = x^2 - x - 2$, G = |1| + |1| + |2| = 4 é um gingado de 2. Qual é o quarto maior número real α tal que 3 é um gingado de α ?

Problema 16 (USA/TST - 2016) Seja $\sqrt{3} = 1, b_1b_2\cdots_{(2)}$ a representação binária de $\sqrt{3}$. Prove que, para todo inteiro positivo n, pelo menos um dos dígitos $b_n, b_{n+1}, \cdots, b_{2n}$ é igual a 1.

Problema 17 (*Ibero*/2015) Encontre todos os pares de inteiros (a, b) tais que

$$(b^2 + 7 \cdot (a - b))^2 = a^3 \cdot b$$

Problema 18 (IMO/SL - 2017/A1) Sejam $a_1, a_2, \dots, a_n, k, M$ inteiros positivos tais que:

$$\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n} = k$$
 e $a_1 \cdot a_2 \cdot \dots \cdot a_n = M$

Se M > 1, prove que o polinômio

$$P(x) = M \cdot (x+1)^k - (x+a_1) \cdot (x+a_2) \cdot \dots \cdot (x+a_n)$$

não tem raízes positivas.

Problema 19 (EGMO/2014) Determine todas as constantes reais t tais que sempre que a, b e c forem lados de um triângulo, $a^2 + bct$, $b^2 + cat$ e $c^2 + abt$ também serão.

Problema 20 (Cone Sul/TST - 2015) Seja n um inteiro positivo e x_1, x_2, \dots, x_n números reais positivos tais que:

$$x_1 + x_2 + \dots + x_n = \frac{1}{x_1^2} + \frac{1}{x_2^2} + \dots + \frac{1}{x_n^2}$$

Mostre que para todo $k \leq n$ existem k números entre x_1, x_2, \dots, x_n cuja soma é maior ou igual a k.

Problema 21 (IMO/SL - 2016/A1) Sejam $a, b \in c$ números reais positivos tais que $ab \ge 1$, $bc \ge 1$ e $ca \ge 1$. Prove que:

$$\sqrt[3]{(a^2+1)\cdot(b^2+1)\cdot(c^2+1)} \leqslant \left(\frac{a+b+c}{3}\right)^2 + 1$$

Problema 22 (IMO/2011) Dado um conjunto $A = \{a_1, a_2, a_3, a_4\}$ de quatro inteiros positivos distintos, seja $s_A = a_1 + a_2 + a_3 + a_4$. Seja n_A o número de pares (i, j) com $1 \le i < j \le 4$ para os quais $a_i + a_j$ é divisor de s_A . Encontre todos os conjuntos A de quatro inteiros postivos distintos para os quais o valor de n_A é máximo.

3.1 Desafio

Problema 23 $(S\acute{e}rvia/2016)$ Sejam $a_1, a_2, \cdots, a_{2^{2016}}$ inteiros positivos tais que, para todo $1 \le n \le 2^{2016}$, temos que $a_n \le 2016$ e $a_1a_2 \cdots a_n + 1$ é um quadrado perfeito. Prove que pelo menos um dos números $a_1, a_2, \cdots, a_{2^{2016}}$ é igual a 1.

3.2 Dicas das questões da seção anterior

Problema 8 Suponha s.p.g. $a \le b \le c$. Analise $c^2 + a + b$.

Problema 9
$$a \cdot \sqrt{b^2 + 1} = \sqrt{a^2 \cdot (b^2 + 1)}$$
.

Problema 10
$$t \cdot \sqrt{x_t - t^2} = \sqrt{t^2 \cdot (x_t - t^2)}$$
.

Problema 11 Prove, indutivamente, que $a_1 = t < 0$ gera que $a_n < 0$ para todo n inteiro positivo. Depois, mostre que $a_1 = t > 1$ não gera solução também. Por último, faça a substituição trigonométrica com $a_i = sen^2\theta_i$.

Problema 12 Para todo x e y reais, prove que $x^2 - xy + y^2 \ge |xy|$. Quando ocorre a igualdade?

Problema 13 Analise o "caso extremo", isto é, se os seis maiores divisores de n forem $n, \frac{n}{2}, \dots, \frac{n}{6}$.

Problema 14

- a) Escreva $-5x^2$ como $-x^2 4x^2$.
- b) Comece com

$$ab(a+b-10) + 8(a+b) = (a+b)(ab+8) - 10ab \ge 2\sqrt{ab}(ab+8) - 10ab$$

Daí, considere a substituição $t = \sqrt{ab}$. A resposta é (a,b) = (1,1) ou (a,b) = (2,2).

Problema 15 Analise os casos $P(x) = x^n - 2$ e $P(x) = x^a - x^b - 1$, com $a > b \ge 1$. No segundo caso, pode-se dividir em outros subcasos: $a \le 3$ e $a \ge 4$.

Problema 16 Suponha o contrário. Dai, teríamos que existem k e n tais que: $2^{n-1} \cdot \sqrt{3} = \underbrace{1b_1 \cdots b_{n-1}}_{k}, \underbrace{0 \cdots 0}_{(n+1) \ 0's} b_{2n+1} \cdots_{(2)}.$

Problema 17 Desenvolvendo algebricamente a equação do enunciado, podemos chegar a conclusão de que a = b ou uma equação do 2° em função de a é igual a 0. Daí, podemos estudar o Δ .

Problema 18 Aplicar $M.A. \ge M.G$. considerando (x+1) um termo e outros (a_i-1) 's uns.

Problema 19 A resposta é o intervalo $\left[\frac{2}{3},2\right]$. Encontre contraexemplos para $t<\frac{2}{3}$ e para t>2 e depois prove a resposta.

Problema 20 Suponha que não. A partir disso, chegue a $x_1 + x_2 + \cdots + x_n < n$. Agora, basta usar a condição do enunciado para concluir um absurdo.

Problema 21 Prove que para x, y reais positivos, com $xy \ge 1$, temos que

$$(x^2+1)(y^2+1) \le \left(\left(\frac{x+y}{2}\right)^2+1\right)^2$$

Problema 22 Prove que $n_A \leq 4$, por exemplo, ordenando os a_i 's. Depois, com algum algebrismo, é possível chegar as duas únicas soluções: $\{(x, 5x, 7x, 11x) : x > 0\}$ e $\{(x, 11x, 19x, 29x) : x > 0\}$.

Problema 23 Prove o seguinte lema: Sejam a, b inteiros positivos tais que a+1 e b são quadrados perfeitos, com a>b>1. Então, ab+1 não é quadrado perfeito.