Polinômios com TN

Exercícios resolvidos no material

Prof. Armando Barbosa

22 de janeiro de 2019

Problema 1 (Rússia/2017) Sejam $a, b \in c$ três inteiros positivos dados, dois a dois distintos. Existe um polinômio do 2° grau $P(x) = kx^2 + lx + m$, com $k, l \in m$ inteiros e k > 0, tal que existem outros três inteiros $d, e \in f$ para os quais temos que $P(d) = a^3, P(e) = b^3 \in P(f) = c^3$?

Problema 2 (IMO/SL - 2005) Sejam a, b, c, d, e e f números inteiros positivos. Sabendo que a soma S = a + b + c + d + e + f divide tanto (abc + def) como (ab + bc + ca - de - ef - fd), prove que S é composto.

Problema 3 ($Vietn\tilde{a}/2017$) Existe algum polinômio P(x) com coeficientes inteiros que satisfaz:

$$\begin{cases} P(1+\sqrt[3]{2}) = 1+\sqrt[3]{2} \\ P(1+\sqrt{5}) = 2+3\sqrt{5} \end{cases}$$

Problema 4 (Belarus/2017) Seja $\overline{a_n \cdots a_1 a_0}$ a representação decimal de 65^k para algum $k \ge 2$. Prove que o polinômio $a_n x^n + \cdots + a_1 x + a_0$ não possui raízes racionais.

Problema 5 (Bulgária/2018) Dado um polinômio $P(x) = a_d x^d + \cdots + a_2 x^2 + a_0$ com coeficientes inteiros positivos e grau $d \ge 2$, considere a sequência:

$$b_1 = a_0$$
 $b_{n+1} = P(b_n)$ $\forall n \geqslant 1$

Prove que $\forall n \geq 2$ existe um número primo p tal que p divide b_n e não divide $b_1 \cdots b_{n-1}$.

Problema 6 (Sérvia/TST - 2013) Nós chamamos os polinômios $A(x) = a_n x^n + \cdots + a_1 x + a_0$ e $B(x) = b_m x^m + \cdots + b_1 x + b_0$, com $a_n b_m \neq 0$, de semelhantes se as seguintes condições acontecem:

- i) n=m;
- ii) Existe uma permutação π do conjunto $\{0, 1, \dots, n\}$ tal que $b_i = a_{\pi(i)}$ para cada $0 \le i \le n$.

Sejam P(x) e Q(x) polinômios semelhantes com coeficientes inteiros. Dado que $P(16) = 3^{2012}$, encontre o menor valor possível de $|Q(3^{2012})|$.

Problema 7 (Coreia do Sul/2018) Determine se existe ou não dois polinômios $P \in Q$, cada um com grau não menor que 2018, com coeficientes inteiros e tais que:

$$P(Q(x)) = 3Q(P(x)) + 1$$

é verdade para todo número real x.