Alguns problemas de teoria dos números

Carlos Gustavo Moreira IMPA

- 1) (OBM-1991). Prove que existem infinitos números da forma 1999...991 que são múltiplos de 1991.
- 2) (P6-IMO-1988). Prove que se a e b são inteiros positivos e $\frac{a^2+b^2}{ab+1}$ é um inteiro então $\frac{a^2+b^2}{ab+1}$ é um quadrado perfeito.
- 3) Prove que existe $n \in \mathbb{N}$ tal que 2^n tem mais de 2000 dígitos e tem pelo menos 1000 zeros consecutivos dentre seus 2000 últimos dígitos.
- 4) Prove que existe $n \in \mathbb{N}$ tal que os 2017 últimos dígitos de 2^n pertencem a $\{1, 2\}$.
- 5) (P5-IMO-1989). Prove que, para todo inteiro positivo n, existem n inteiros positivos consecutivos, nenhum dos quais é potência de primo.
- 6) (P3-IMO-1990). Determine todos os inteiros positivos n tais que $\frac{2^n+1}{n^2}$ é inteiro.
- 7) (P6-IMO-1991). Uma sequência infinita $x_0, x_1, x_2, ...$ de números reais é dita limitada se existe uma constante C tal que $|x_i| \leq C, \forall i \geq 0$.
 - Dado um número real $\alpha > 1$, construa uma sequência infinita limitada $x_0, x_1, x_2, ...$ tal que $|x_i x_j||i j|^{\alpha} \ge 1$ para todo par de naturais distintos i, j.
- 8) (P6-IMO-1994). Prove que existe um conjunto A de inteiros positivos com a seguinte propriedade: para cada conjunto infinito S de primos, existem dois inteiros positivos $m \in A$ e $n \notin A$, cada um dos quais sendo produto de k elementos distintos de S para algum $k \geq 2$.
- 9) (P3-IMO-1998). Para cada inteiro positivo n, seja d(n) o número de divisores positivos de n (incluindo 1 e n). Determine todos os inteiros positivos k tais que $d(n^2)/d(n) = k$ para algum inteiro positivo n.
- 10) (P5-IMO-2000). É possível encontrar N divisível por exatamente 2000 primos distintos tal que N divide $2^N + 1$? [N pode ser divisível por potências de primos.]
- 11) Prove que existem infinitos primos da forma 4k + 1.
- **12)** (BANCO-IMO-2000). Determine todas as triplas (a, m, n) de inteiros positivos tais que $a^m + 1 \mid (a+1)^n$.

- 13) Dizemos que um inteiro positivo m é uma potência se $m=a^b$, com $a,b\geq 2$. Prove que, para todo inteiro positivo n, existe um conjunto A formado por n inteiros positivos tal que, para todo $B\subset A, B\neq \emptyset$, a soma dos elementos de B é uma potência.
- 14) (P6-IMO-2003). Prove que, para todo primo p, existe um primo q tal que $n^p p$ não é divisível por q, para todo inteiro positivo n.
- 15) (P4-IMO-2005). Consideremos a sequência infinita $a_1, a_2, ...$ definida por

$$a_n = 2^n + 3^n + 6^n - 1, \forall n \ge 1.$$

Determine todos os inteiros positivos que são coprimos com todos os termos da sequência.

- **16)** (P5-IMO-2007). Prove que se a e b são inteiros positivos tais que $4ab-1 \mid (4a^2-1)^2$ então a=b.
- 17) (P3-IMO-2008). Prove que existe um número infinito de inteiros positivos n tais que n^2+1 tem um divisor primo maior que $2n+\sqrt{2n}$.
- 18) (P3-OBM-2012). Qual é o menor natural n para o qual existe k natural de modo que os 2012 últimos dígitos na representação decimal de n^k são iguais a 1?
- **19)** Sejam $a \in b$ inteiros positivos tais que $a^n 1$ divide $b^n 1$ para todo inteiro positivo n. Prove que $b = a^k$ para algum $k \in \mathbb{N}$.
- **20)** Seja p um primo ímpar. Prove que $\sum_{k=1}^{p-1} k^{p-1} \equiv p + (p-1)! \pmod{p^2}$.
- **21)** (P6-Ibero-2016). Sejam $k \ge 1$ um inteiro e a_1, a_2, \ldots, a_k dígitos. Prove que existem dígitos b_1, b_2, \ldots, b_k e um inteiro $n \ge 0$ tais que os últimos 2k dígitos de 2^n são, nessa ordem, $a_1, a_2, \ldots, a_k, b_1, b_2, \ldots, b_k$.
- **22)** (P6-IMO-2017). Um par ordenado (x, y) de inteiros é um *ponto primitivo* se o máximo divisor comum entre x e y é 1. Dado um conjunto finito S de pontos primitivos, demonstre que existem um inteiro positivo n e inteiros a_0, a_1, \ldots, a_n tais que, para cada (x, y) de S, se verifica:

$$a_0x^n + a_1x^{n-1}y + a_2x^{n-2}y^2 + \dots + a_{n-1}xy^{n-1} + a_ny^n = 1.$$