Problemas Temáticos de Análise Sessão de Olimpíadas do 25º. Colóquio Brasileiro de Matemática Carlos Gustavo Moreira (Gugu) – IMPA Antonio Caminha (UFC)

- I) Problemas de Análise e Teoria dos Números:
- 1) Prove que existe $\alpha > 1$ tal que $\{\alpha^n\} = \alpha^n [\alpha^n] \in \left(\frac{1}{3}, \frac{2}{3}\right)$ e $[\alpha^n]$ é par se e somente se n é primo, para todo inteiro positivo n.

Nota: [x] é o único inteiro tal que $[x] \le x \le [x] + 1$.

- 2) a) Seja A={n natural | n não tem 0 em sua representação decimal}. Prove que $\sum_{n\in A}\frac{1}{n}<+\infty\,.$
 - b) Prove que $\sum_{p_-primo} \frac{1}{p} = +\infty$.
 - c) Prove que qualquer seqüência finita de dígitos aparece na representação decimal de infinitos números primos.
- 3) Sejam $c \in Q$, $f(x) = x^2 + c$. Definimos $f^0(x) = x$, $f^{n+1}(x) = f(f^n(x))$, $n \in \mathbb{N}$. Dizemos que $x \in \mathbb{R}$ é pré-periódico se $\{f^n(x) \mid n \in \mathbb{N}\}$ é finito. Mostre que $\{x \in Q \mid x \text{ é pré-periódico}\}$ é finito.
- 4) Sejam $a \in b$ inteiros positivos tais que $a^n 1$ divide $b^n 1$ para todo inteiro positivo n. Prove que $b = a^k$ para algum $k \in \mathbb{N}$.
- 5) a)Prove que existe $n \in \mathbb{N}$ tal que os 2002 primeiros dígitos de 2^n são iguais a 1.
 - b)Prove que existe $n \in \mathbb{N}$ tal que os 2002 primeiros dígitos de 2^n são iguais a 1 e os 2002 primeiros dígitos de 3^n são iguais a 2.

Sugestão: Veja o apêndice do artigo "Propriedades estatísticas de frações contínuas e aproximações diofantinas", de Carlos Gustavo Moreira, publicado na Revista Matemática Universitária nº 29, pp. 125-137 (ou em www.impa.br/~gugu/khintchine.ps).

- 6) a) Seja P(x) um polinômio de grau n com coeficientes inteiros e seja $\alpha \in R \setminus Q$ tal que $P(\alpha) = 0$. Prove que existe c>0 tal que $|\alpha p/q| > c/q^n$ para quaisquer $p, q \in Z, q > 0$.
- b) Prove que $\alpha = \sum_{n=0}^{\infty} \frac{1}{10^{n!}}$ é transcendente, i.e., não existe nenhum polinômio não nulo P(x) de coeficientes racionais com $P(\alpha) = 0$.
- 7) Prove que, para todo $\alpha \in R$, $\limsup \cos^n(n\alpha) = 1$.

II) Problemas relacionados ao teorema de Baire:

Dizemos que $A \subset \mathbb{R}^n$ é *aberto* se, para todo $x \in A$, existe $\varepsilon > 0$ tal que $|y-x| < \varepsilon \Rightarrow y \in A$. Dizemos que $F \subset \mathbb{R}^n$ é fechado se $\mathbb{R}^n \setminus F$ é aberto. Dado $X \subset \mathbb{R}^n$ e $Y \subset X$, dizemos que Y é *denso* em X se $\forall x \in X, \forall \varepsilon > 0, \exists y \in Y, |y-x| < \varepsilon$.

- 1) Prove o teorema de Baire: se $F \subset \mathbb{R}^n$ é fechado, $A_k \subset \mathbb{R}^n$ é aberto e $A_k \cap F$ é denso em $F, \forall k \in \mathbb{N}$, então $\bigcap_{k \in \mathbb{N}} A_k \cap F$ é denso em F.
- 2) Prove que não existe $f: \mathbb{R} \to \mathbb{R}$ derivável cuja derivada seja descontínua em todos os pontos.
- 3) Prove que não existe $f: \mathbb{R} \to \mathbb{R}$ que seja contínua em todos os pontos de Q e descontínua em todos os pontos de $\mathbb{R} \setminus \mathbb{Q}$.
- 4) Prove que não existe uma seqüência de funções contínuas $f_1, f_2, f_3, ...: \mathbb{R} \to \mathbb{R}$ tal que $\lim_{n \to \infty} f_n(x) = 1$ para todo $x \in \mathbb{Q}$ e $\lim_{n \to \infty} f_n(x) = 0$ para todo $x \in \mathbb{R} \setminus Q$.
- 6) Seja $f: R \to R$ uma função infinitamente derivável tal que, para todo $x \in \mathbb{R}$, existe $n \in N$ tal que a n-ésima derivada $f^{(n)}(x) = 0$. Prove que f é um polinômio.

III) Problemas Diversos:

- 1) Seja $K \subset R^n$ limitado (i.e, existe R>0 tal que $|x| \le R, \forall x \in K$) e $f: \mathbb{R} \to \mathbb{R}$ uma função sobrejetiva tal que $|f(x) f(y)| \le |x y|, \forall x, y \in K$. Prove que f é uma isometria, i.e, $|f(x) f(y)| = |x y|, \forall x, y \in K$.
- 2) Sejam $x_1, x_2, ..., x_k > 0$. Para cada $1 \le k \le n$, definimos a $k \acute{e}sima$ $m\acute{e}dia$ $sim\acute{e}trica$ de $x_1, x_2, ..., x_k$ por $S_k(x_1, ..., x_k) = \sqrt[k]{\sum_{1 \le i_1 < i_2 < ... < i_k \le n} x_{i_1} x_{i_2} ... x_{i_k} / \binom{n}{k}}$.

Prove que $S_1(x_1,...,x_n) \ge S_2(x_1,...,x_n)... \ge S_n(x_1,...,x_n)$, valendo a igualdade em alguma dessas desigualdades se, e somente se, $x_1 = x_2 = ... = x_n$.

3) (XXIV OBM – Nível U) Dado $x \in \mathbb{R}$, definimos $\ln_0(x) = x$ e, para cada $k \in \mathbb{N}$, se $\ln_k(x) > 0$, definimos $\ln_{k+1}(x) = \ln(\ln_k(x))$, onde $\ln \epsilon$ o logaritmo natural.

Dado n inteiro positivo, definimos k(n) como o maior k tal que $\ln_k(n) \ge 1$, e a_n como k(n)

$$\prod_{j=0}^{k(n)} \ln_j(n) = n \cdot \ln(n) \cdot \ln \ln(n) \cdot \dots \cdot \ln_{k(n)}(n).$$

Diga se a série $\sum_{n=1}^{\infty} \frac{1}{a_n}$ converge ou diverge.

- 4) (V OIMU) Prove que existem funções contínuas $a_1, a_2, a_3,...:[0,1] \rightarrow (0,+\infty)$ tais que
- i) $\sum_{n=1}^{\infty} a_n(t) < +\infty, \forall t \in [0,1].$
- ii) Para toda seqüência (b_n) de termos positivos com $\sum_{n=1}^{\infty} b_n < +\infty$ existe $t \in [0,1]$ tal que $\lim_{n \to +\infty} \frac{b_n}{a_n(t)} = 0$.
- 5) (IV OIMU) Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua e periódica tal que a desigualdade f(x) > 0 tem pelo menos uma solução.
- a) Demonstrar que existe um inteiro $a \ge 2$ tal que o sistema infinito de desigualdades

$$f(a^k x) > 0, k = 0,1,2,...$$

tem pelo menos uma solução.

b) Demonstrar que existe um inteiro $b \ge 2$ tal que o cardinal do conjunto de soluções do sistema infinito de desigualdades

$$f(b^k x) > 0, k = 0,1,2,...$$

é igual ao contínuo.

Nota: Dizemos que um conjunto X tem cardinal igual ao contínuo se existe uma bijeção $f: X \to [0,1]$ entre X e o intervalo $[0,1] \subset R$.

- 6) (III OIMU) Em um plano se move de qualquer maneira um ponto (um porco) com velocidade não superior a 1 km/h, descrevendo uma curva contínua $\lambda:[0,1] \to \mathbb{R}^2$, onde [0,1] é um intervalo de tempo de um hora. Sabe-se que o porco se encontra inicialmente em um quadrado de lado de 8 km. No centro deste quadrado se encontra um demônio da Tasmânia cego que não pode saber a posição do porco, porém pode mover-se com qualquer velocidade. Encontrar um curva contínua $\gamma:[0,1] \to \mathbb{R}^2$ (o caminho percorrido pelo demônio da Tasmânia) tal que em algum momento de tempo $t \in [0,1]$ se obtém a igualdade $\lambda(t) = \gamma(t)$, isto é, o demônio da Tasmânia pega o porco independente do caminho que este último escolha.
- 7) Dizemos que a>0 é *corda universal* se, para toda função contínua $f:[0,1] \to \mathbb{R}$ com f(0) = f(1) existem $x, y \in [0,1]$ com |x y| = a e f(x) = f(y). Determine todas as cordas universais.
- 8) (XIX OBM Sênior) Seja f uma função do plano no plano que satisfaz $d(P,Q) = 1 \Rightarrow d(f(P), f(Q)) = 1$ para todos os pontos $P \in Q$ do plano. Mostre que d(f(P), f(Q)) = d(P, Q) para todos os pontos $P \in Q$ do plano.

Obs.: d(X,Y) denota a distância entre X e Y.