Funções Geratrizes

Rafael Kazuhiro Miyazaki - rafaelkmiyazaki@gmail.com

21 de Janeiro de 2019

1 Introdução

Uma função geratriz (ou geradora) é uma função que carrega uma certa informação em sua série de potências. Em casos mais simples (finitos), será um polinômio cujos coeficientes representam certas sequências. Em termos práticos, a função geratriz atrelada a sequência $\{a_n\}_{n>0}$ é a função

$$f(x) = \sum_{n>0} a_n x^n.$$

Em alguns casos, é necessário trabalhar com funções geratrizes mais elaboradas, com mais variáveis.

Exemplo 1.1. A probabilidade de em n lançamentos de uma moeda não viciada, obtermos exatamente k caras é o coeficiente de x^k do polinômio $\left(\frac{1+x}{2}\right)^n$

Parte importante na resolução de problemas usando funções geratrizes é ser capaz de identificar a mesma e tão importante quanto é saber calcular os coeficientes da mesma.

2 Recorrências Lineares

Uma aplicação clássica de funções geratrizes é a resolução de recorrências lineares.

Exemplo 2.1. Considere a sequência de Fibonacci:

$$F_0 = 0, F_1 = 1, F_{n+2} = F_{n+1} + F_n, \forall n \ge 0.$$

Seja $f(x) = \sum_{i \geq 0} F_i x^i$ a função geratriz da sequência de Fibonacci. A mesma deve satisfazer

$$f(x)(x^2 + x) = f(x) - xF_1 - F_0 \implies f(x) = \frac{x}{1 - x - x^2}.$$

Tentaremos escrever f como soma de frações cuja série de potências seja conhecida. Para tal, observamos que $1-x-x^2=(1-ax)(1-bx)$, onde a,b são os inversos das raízes de $1-x-x^2$ e daí basta escrever $f(x)=\frac{A}{1-xa}+\frac{B}{1-xb}$, com A e B apropriados que os coeficientes serão facilmente obtidos. Esse trabalho ficará a cargo do leitor.

Problema 2.1. Determine a fórmula em função de n do termo A_n da sequência $A_1=a, A_2=b, A_{n+2}=cA_{n+1}+dA_n, \forall n\geq 1$, para as seguintes quádruplas (a,b,c,d):

- 1. (5, 13, 5, -6)
- 2. (3, 27, 6, -9)
- 3. (1, 2, 3, 4)

3 Série de Taylor

Definição 3.1. Uma função $f: \mathbb{R} \to \mathbb{R}$ é dita analítica em a se f é n vezes diferenciável em a para todo natural n.

Teorema 3.1. Seja f uma função analítica em a, então em uma vizinhança U de a, vale a seguinte expansão em série de potências

$$f(x) = \sum_{k>0} f^{(k)}(a) \frac{(x-a)^k}{k!}$$

Em geral estaremos interessados no caso a=0. pois obteremos a série de potências de maneira a obter diretamente a sequência gerada pela função.

Problema 3.1. (Números de Catalan) Determine C_n o número de maneiras de triangularizar um polígono regular de n lados.

Problema 3.2. (RMM 2018) Seja n um inteiro positivo e fixe 2n pontos distintos em uma circunferência. Determine o número de maneiras de conectar os pontos com n flechas (isto é, segmentos de reta orientados) tais que todas as seguintes condições sejam satisfeitas:

- $\bullet\,$ cada um dos 2n pontos é uma das extremidades de alguma flecha;
- quaisquer duas flechas não se intersectam; e
- não existem duas flechas \overrightarrow{AB} e \overrightarrow{CD} tais que A, B, C e D apareçam nesta ordem no sentido horário ao redor da cincunferência (não necessariamente consecutivamente).

4 A Fórmula da Multisecção

Utilizamos a fórmula da multisecção para determinar a soma dos coeficientes de índices múltiplos de um certo inteiro k em um polinômio. A idéia central da fórmula é utilizar a fatoração

$$x^{k} - 1 = (x - 1) \left(\sum_{i=0}^{k-1} x^{i} \right)$$

Teorema 4.1. Seja $P(x) = \sum_{i=0}^{d} a_i x^i$, então temos

$$\sum_{k|i} a_i = \frac{1}{k} \sum_{j=0}^{k-1} P(\omega^j),$$

onde $\omega = e^{\frac{2\pi i}{k}}$.

Problema 4.1. (IMO 1995) Seja p um número primo ímpar. Quantos subconjuntos com p elementos de $\{1, 2, \ldots, 2p\}$ possuem soma dos elementos divisível por p?

Problema 4.2. (TST Brasil 2018) Seja $n \ge 1$ um inteiro. Para cada subconjunto $S \subseteq \{1, 2, ..., 3n\}$, seja f(S) a soma dos elementos de S, com a convenção de que $f(\emptyset) = 0$. Determine, em função de n, a soma

$$\sum_{\substack{S \subseteq \{1,2,\dots,3n\}\\3|f(S)}} f(S)$$

em que S percorre todos os subconjuntos de $\{1,2,...,3n\}$ tais que S é um múltiplo de 3.

Problema 4.3. (SL 2007) Determine todos os inteiros positivos n para os quais os números do conjunto $S = \{1, 2, ..., n\}$ podem ser coloridos de vermelho ou azul, de forma a satisfazer a seguinte condição: O conjunto $S \times S \times S$ contém exatamente 2007 triplas ordenadas (x, y, z), tais que:

- (i) os números x, y, z são da mesma cor,
- (ii) o número x + y + z é divisível por n.

Problema 4.4. (IMC 2016) Let S_n denote the set of permutations of the sequence (1, 2, ..., n). For every permutation $\pi = (\pi_1, ..., \pi_n) \in S_n$, let $\operatorname{inv}(\pi)$ be the number of pairs $1 \leq i < j \leq n$ with $\pi_i > \pi_j$; i. e. the number of inversions in π . Denote by f(n) the number of permutations $\pi \in S_n$ for which $\operatorname{inv}(\pi)$ is divisible by n+1. Prove that there exist infinitely many primes p such that $f(p-1) > \frac{(p-1)!}{p}$, and infinitely many primes p such that $f(p-1) < \frac{(p-1)!}{p}$.

5 A Fórmula de Inversão de Lagrange

Utilizamos a Fórmula de Inversão de Lagrange para extrair os coeficientes da série de Taylor de uma função que conhecemos apenas implicitamente.

Teorema 5.1. Seja z uma função de w satisfazendo uma equação da forma z = f(w), onde f é analítica em a e $f'(a) \neq 0$. Então em uma vizinhança de f(a), podemos inverter a função, i.e., escrever w em função de z, a dizer w = g(z), expressa pela série de potências

$$g(z) = a + \sum_{n>1} g_n \frac{(z - f(a))^n}{n!},$$

onde

$$g_n = \lim_{w \to a} \left[\left(\frac{w - a}{f(w) - f(a)} \right)^n \right]^{(n-1)}$$

onde a derivada (n-1)-ésima é tomada sobre a variável w.

Novamente, estamos interessados no caso f(a) = 0 na maioria dos casos.

Problema 5.1. Determine a sequência g_n atrelada á função geratriz G(x) que satisfaz a equação

$$D(x) = xe^{D(x)}$$

Problema 5.2. (IMC 2018) Seja $\Omega = \{(x,y,z) \in \mathbb{Z}^3 : y+1 \geqslant x \geqslant y \geqslant z \geqslant 0\}$. Um sapo de move sobre os pontos de Ω através de saltos de tamanho 1. Para cada inteiro positivo n, determine o número de caminhos que o sapo pode tomar para chegar ao ponto (n,n,n) começando de (0,0,0) em exatamente 3n saltos.

6 Problemas

Problema 6.1. Dado um inteiro positivo n, seja A o número de maneiras de em que se pode particionar n como a soma de números ímpares. Seja agora B o número de maneiras de particionar n em números inteiros distintos. Prove que A = B.

Problema 6.2. Seja n um inteiro positivo para o qual existem sequências distintas de reais positivos $a_1, a_2, ..., a_n$ e $b_1, b_2, ..., b_n$ tais que as somas

$$a_1 + a_2, a_1 + a_3, ..., a_{n-1} + a_n$$

e

$$b_1 + b_2, b_1 + b_3, ..., b_{n-1} + b_n$$

são iguais a menos de permutação. Prove que n é uma potência de 2.

Problema 6.3. (IMO 2008) Sejam $n \in k$ inteiros positivos, com $k \ge n \in k - n$ par. Sejam 2n lâmpadas numeradas 1, 2, ..., 2n, cada uma das quais pode estar acesa ou apagada. Inicialmente todas as lâmpadas estão apagadas. Considere a

sequência de passos: a cada passo, uma das lâmpadas muda de estado(de acesa para apagada ou de apagada para acesa).

Seja N o número de sequências de k passos resultando em todas as lâmpadas de 1 a n estarem acesas, e todas as lâmpadas de n+1 a 2n estarem apagadas. Seja M o número de sequências de k passos resultando em todas as lâmpadas de 1 a n estarem acesas, e todas as lâmpadas de n+1 a 2n estarem apagadas, mas em que nenhuma das lâmpadas de n+1 a 2n esteve em qualquer momento acesa.

Determine $\frac{N}{M}$.

Problema 6.4. (SL 2017) Sir Alex joga o seguinte jogo em uma fileira de 9 casas. Inicialmente, todas as casas estão vazias. Em cada movimento, Sir Alex pode realizar exatamente uma das sequintes operações:

- 1. Escolher um número da forma 2^j , onde j é um inteiro não negativo, e colocar este número em uma casa vazia
- 2. Escolher duas (não necessariamente adjacentes) casas com o mesmo número nelas; denote esse número por 2^{j} . Substituir o número de uma dessas casas por 2^{j+1} e apagar o número da outra casa.

Ao final do jogo, uma casas contém o número 2^n , onde n é um número positivo dado, enquanto todas as outras casas encontram-se vazias. Determine o número máximo de jogadas que Sir Alex pode ter realizado, em função de n.