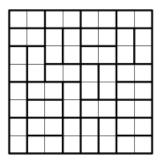
Semana Olímpica 2019 Grafos e Determinantes Nível U

Samuel Feitosa

1 Coberturas de Tabuleiros e Acoplamentos Perfeitos

Exercício 1. De quantos modos um tabuleiro 8×8 pode ser coberto com dominós 2×1 ?



Teorema 1 Todo grafo planar bipartido 2-conexo possui um acoplamento perfeito.

Teorema 2 (Schwartz-Zipel) Sejam K um corpo arbitrário e S um subconjunto finito de K. Então para todo polinômio não nulo $p(x_1, x_2, ..., x_m)$ de grau d em m variáveis e com coeficientes em K, o número de m-uplas $(r_1, r_2, ..., r_m) \in S^m$ com $p(r_1, r_2, ..., r_m) = 0$ é no máximo $d|S|^{m-1}$.

2 Caminhos

Proposição 1 (Gessel-Viennot) Seja G = (V, E) um grafo orientado, com pesos, acíclico e finito, $A = \{A_1, A_2, ..., A_n\}$ e $B = \{B_1, B_2, ..., B_n\}$ dois conjuntos de vértices com n elementos e M a matriz-caminho de A até B. Então

$$det M = \sum_{\mathcal{D}} sign(\mathcal{P}) w(\mathcal{P}),$$

(\mathcal{P} percorre os sistemas de caminhos de vértices disjuntos).

Teorema 3 (Binet-Cauchy) Sejam P uma matriz $r \times s$ e Q uma matriz $s \times r$, com $r \le s$. Então $det(PQ) = \sum_{\mathcal{Z}} (detP_{\mathcal{Z}})(det(Q_{\mathcal{Z}}), onde <math>P_{\mathcal{Z}}$ é a submatriz $r \times r$ de P, com conjunto de colunas P, e P é a submatriz P e P0, com correpondentes linhas P1.

Exercício 2. (IME 2016) Define-se A como a matriz 2016 \times 2016, cujos elementos satisfazem à igualdade

$$a_{i,j} = \binom{i+j-2}{j-1},$$

para $i, j \in \{1, 2, ..., 2016\}$. Calcule o determinante da matriz A.

Teorema 4 (Cayley) Existem n^{n-2} árvores rotuladas diferentes com n vértices.

Exercício 3 (OBMU, 2005). Prove que para quaisquer naturais $0 \le i_1 < i_2 < \ldots < i_k$ e $0 \le j_1 < j_2 < \ldots < j_k$, a matriz $A = (a_{rs})_{1 \le r,s \le k}$ dada por $a_{rs} = \binom{i_r + j_s}{i_r}$ $(1 \le r,s \le k)$ é invertível.

3 Matrizes de Hadamard e Códigos Corretores de Erros

Definition 1 Seja A um alfabeto. Sejam $u,v \in A^n$ palavras de comprimento n. A distância de Hamming entre u e v, denotada por d(u,v) é o número de posições em que u e v diferem.

Definition 2 Dizemos que um código C corrige t erros se para todo $u \in A^n$ existe no máximo um $v \in C$ com $d(u,v) \le t$. A distância mínima de um código C é definida como $d(C) = min\{d(u,v) : u,v \in C, u \ne v\}$. Se C é um código de comprimento n, tamanho M e distância mínima d, então ele será chamado de (n,M,d)-código.

Exercício 4. Um código C corrige t erros se, e somente se, $d(C) \ge 2t + 1$.

Exemplo 1 Considere a matriz P de dimensões $l \times n$, com $n = 2^l - 1$, cujas colunas são todos os vetores não-nulos de F_2^l . Seja C o conjunto dos vetores w tal que Pw = 0. Verifique que d(C) = 3.

Teorema 5 (Plotkin, 1960) Suponha que $n, d \in \mathbb{N}$ com 2d > n. Se $A_2(n, d)$ representa o número máximo de possíveis palavras em um código binário com palavras de comprimento n e distância mínima d, então

$$A_2(n,d) \le \frac{2d}{2d-n}.$$

Definition 3 Seja $n \in \mathbb{N}$. Uma *matriz de Hadamard* de ordem n é uma matriz H tal que toda entrada de H é ± 1 e $HH^T = nI$.

Exercício 5. Suponha que H é uma matriz de Hadamard de ordem $n \ge 2$. Se $i, k \in \{1, 2, ..., n\}$ e $i \ne k$, então a linha i e a coluna j de H são iguais em exatamente n/2 posições.

Teorema 6 Suponha que H é uma matriz de Hadamard de ordem $n \ge 2$. Seja B uma matriz $2n \times n$ definida por

$$B = \left(\begin{array}{c} H \\ -H \end{array}\right).$$

As linhas de B são as palavras de um (n, 2n, n/2)-código sobre o alfabeto $\{+, -\}$.

Os cógidos dados pelo teorema anterior são chamados de códigos de Hadamard.

Exemplo 2 Considere

$$H = \begin{pmatrix} + & + & + & - \\ + & + & - & + \\ + & - & + & + \\ - & + & + & + \end{pmatrix}$$

O código de Hadamard associado a essa matriz é

0001 0010 0100 1000

1110 1101 1011 0111

Teorema 7 (Jacques Hadamard, 1893) Se N é uma matriz possuindo vetores colunas denotados por v_i , então

$$|det(N)| \leq \prod_{i=1}^{n} ||v_i||.$$

Exercício 6 (Putnam, 2005). Seja H uma matriz $n \times n$ em que as entradas são ± 1 e cujas linhas são mutuamente ortogonais. Suponha que H possui uma submatriz $a \times b$ cujas entradas são todas iguais a 1. Mostre que $ab \le n$.

Teorema 8 (Lindsey) A soma das entradas de qualquer submatriz $a \times b$ de uma matriz de Hadamard é no máximo \sqrt{abn} .