

Language: Português

Language: Portuguese

Day: 1

Terça-feira, 9 de abril de 2019

Problema 1. Encontre todas as triplas (a, b, c) de números reais tais que ab + bc + ca = 1 e

$$a^2b + c = b^2c + a = c^2a + b.$$

Problema 2. Seja n um inteiro positivo. Dominós são colocados em um tabuleiro $2n \times 2n$ de forma que toda casa do tabuleiro é adjacente a exatamente uma casa coberta por um dominó. Para cada n, determine o maior número de dominós que podem ser colocados no tabuleiro dessa maneira.

(Um $domin\acute{o}$ é uma peça de tamanho 2×1 ou 1×2 . Domin\acute{o}s são colocados no tabuleiro de maneira que cada domin\acute{o} cobre exatamente 2 casas do tabuleiro, e domin\acute{o}s não podem se sobrepor. Duas casas do tabuleiro são chamadas adjacentes se elas são diferentes e têm um lado em comum.)

Problema 3. Seja ABC um triângulo tal que $\angle CAB > \angle ABC$, e seja I o seu incentro. Seja D o ponto do segmento BC tal que $\angle CAD = \angle ABC$. Seja ω a circunferência tangente a AC em A que também passa por I. Seja X o segundo ponto de interseção entre ω e o circuncírculo de ABC. Prove que as bissetrizes dos ângulos $\angle DAB$ e $\angle CXB$ se intersectam em um ponto na reta BC.

Tempo de prova: 4 horas e 30 minutos Cada problema vale 7 pontos

Language: Portuguese

Day: 2

Quarta-feira, 10 de abril de 2019

Problema 4. Seja ABC um triângulo com incentro I. A circunferência que passa por B e é tangente a AI no ponto I intersecta o lado AB novamente no ponto P. A circunferência que passa por C e é tangente a AI no ponto I intersecta o lado AC novamente em Q. Prove que PQ é tangente ao incírculo de ABC.

Problema 5. Seja $n \ge 2$ um inteiro, e sejam a_1, a_2, \ldots, a_n inteiros positivos. Mostre que existem inteiros positivos b_1, b_2, \ldots, b_n que satisfazem as seguintes três condições:

(A) $a_i \leq b_i \text{ para } i = 1, 2, \dots, n;$

Language: Português

(B) os restos de b_1, b_2, \ldots, b_n na divisão por n são distintos dois a dois; e

(C)
$$b_1 + \dots + b_n \le n \left(\frac{n-1}{2} + \left\lfloor \frac{a_1 + \dots + a_n}{n} \right\rfloor \right)$$
.

(|x| denota a parte inteira do número real x, isto é, o maior inteiro que é menor ou igual a x.)

Problema 6. Alina traça 2019 cordas em uma circunferência. Os pontos extremos dessas cordas são todos distintos. Um ponto é considerado marcado se ele é de um dos seguintes tipos:

- (i) um dos 4038 pontos extremos das cordas; ou
- (ii) um ponto de interseção de pelo menos duas das cordas.

Alina escreve um número em cada ponto marcado. Dos 4038 pontos do tipo (i), ela escreve o número 0 em 2019 destes pontos, e escreve o número 1 nos outros 2019 pontos. Em cada ponto do tipo (ii), Alina escreve um inteiro qualquer (não necessariamente positivo).

Em cada corda, Alina considera os segmentos que conectam 2 pontos marcados consecutivos (uma corda com k pontos marcados tem k-1 desses segmentos). Em cada um desses segmentos ela escreve 2 números. Em amarelo, ela escreve a soma dos números escritos nos pontos extremos desse segmento. Em azul, ela escreve o valor absoluto da diferença dos números escritos nos pontos extremos desse segmento.

Alina percebe que os N+1 números escritos em amarelo são exatamente os números $0,1,\ldots,N.$ Mostre que pelo menos um dos números escritos em azul é um número múltiplo de 3.

(Uma corda é um segmento de reta que conecta 2 pontos distintos de uma circunferência.)

Tempo de prova: 4 horas e 30 minutos Cada problema vale 7 pontos