IMC 2019, Blagoevgrad, Bulgaria
 Day 1, July 30, 2019

Problem 1. Evaluate the product

$$
\prod_{n=3}^{\infty} \frac{\left(n^{3}+3 n\right)^{2}}{n^{6}-64}
$$

(10 points)
Problem 2. A four-digit number $Y E A R$ is called very good if the system

$$
\begin{aligned}
& Y x+E y+A z+R w=Y \\
& R x+Y y+E z+A w=E \\
& A x+R y+Y z+E w=A \\
& E x+A y+R z+Y w=R
\end{aligned}
$$

of linear equations in the variables x, y, z and w has at least two solutions. Find all very good YEARs in the 21st century.
(The 21st century starts in 2001 and ends in 2100.)

Problem 3. Let $f:(-1,1) \rightarrow \mathbb{R}$ be a twice differentiable function such that

$$
2 f^{\prime}(x)+x f^{\prime \prime}(x) \geq 1 \quad \text { for } x \in(-1,1) .
$$

Prove that

$$
\int_{-1}^{1} x f(x) \mathrm{d} x \geq \frac{1}{3} .
$$

(10 points)
Problem 4. Define the sequence a_{0}, a_{1}, \ldots of numbers by the following recurrence:

$$
a_{0}=1, \quad a_{1}=2, \quad(n+3) a_{n+2}=(6 n+9) a_{n+1}-n a_{n} \quad \text { for } n \geq 0 .
$$

Prove that all terms of this sequence are integers.

Problem 5. Determine whether there exist an odd positive integer n and $n \times n$ matrices A and B with integer entries, that satisfy the following conditions:

1. $\operatorname{det}(B)=1$;
2. $A B=B A$;
3. $A^{4}+4 A^{2} B^{2}+16 B^{4}=2019 I$.
(Here I denotes the $n \times n$ identity matrix.)

IMC 2019, Blagoevgrad, Bulgaria

Day 2, July 31, 2019

Problem 6. Let $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ be continuous functions such that g is differentiable. Assume that $\left(f(0)-g^{\prime}(0)\right)\left(g^{\prime}(1)-f(1)\right)>0$. Show that there exists a point $c \in(0,1)$ such that $f(c)=g^{\prime}(c)$.

Problem 7. Let $C=\{4,6,8,9,10, \ldots\}$ be the set of composite positive integers. For each $n \in C$ let a_{n} be the smallest positive integer k such that $k!$ is divisible by n. Determine whether the following series converges:

$$
\sum_{n \in C}\left(\frac{a_{n}}{n}\right)^{n}
$$

(10 points)
Problem 8. Let x_{1}, \ldots, x_{n} be real numbers. For any set $I \subset\{1,2, \ldots, n\}$ let $s(I)=\sum_{i \in I} x_{i}$. Assume that the function $I \mapsto s(I)$ takes on at least 1.8^{n} values where I runs over all 2^{n} subsets of $\{1,2, \ldots, n\}$. Prove that the number of sets $I \subset\{1,2, \ldots, n\}$ for which $s(I)=2019$ does not exceed 1.7^{n}.
(10 points)
Problem 9. Determine all positive integers n for which there exist $n \times n$ real invertible matrices A and B that satisfy $A B-B A=B^{2} A$.
(10 points)
Problem 10. 2019 points are chosen at random, independently, and distributed uniformly in the unit disc $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}$. Let C be the convex hull of the chosen points. Which probability is larger: that C is a polygon with three vertices, or a polygon with four vertices?
(10 points)

