Álgebra Linear de Bolso - Nível 3

João Lucas Camelo Sa, Semana Olímpica 2020

1 Noções Básicas

É dado o seguinte problema clássico: determinar as soluções de um sistema de equações lineares em n variáveis x_1, x_2, \ldots, x_n :

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{m2}x_2 + \dots + a_{nn}x_n = b_m$$

Para facilitar a notação, definiremos **vetores** como uma sequência finita de elementos de um certo conjunto (na aula de hoje, \mathbb{R}). Por exemplo, $x = (x_1, x_2, \dots, x_n)$ denota as variáveis das nossas equações. O **produto escalar** entre dois vetores de mesmo tamanho é definido como a soma dos produtos em posições iguais:

$$x \cdot y = x_1 y_1 + x_2 y_2 + \dots x_n y_n$$

Agora podemos enxugar um pouco nossas equações: $a_i \cdot x = b_i$. Podemos ir mais além ir aplicar o produto escalar a um vetor de vetores, a **matriz** $m \times n$:

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

2 Espaços Vetoriais e Independência Linear

Vamos formalizar a ideia de vetores um pouco mais. Um **espaço vetorial** é um conjunto E portado de duas operações, chamadas adição (+) e multiplicação por escalar, de modo a satisfazer as seguintes regras para todos $u, v, w \in E$ e $\alpha, \beta \in \mathbb{R}$:

- comutatividade: u + v = v + u.
- associatividade: (u+v)+w=u+(v+w) e $(\alpha\beta)v=\alpha(\beta v)$.
- vetor nulo: Existe $0 \in E$ tal que v + 0 = v, para todo $v \in E$.

- inverso: Para todo $v \in E$, existe $-v \in E$ tal que v + (-v) = 0.
- distributividade: $(\alpha + \beta)v = \alpha v + \beta v$, e $\alpha(u+v) = \alpha u + \alpha v$.
- multiplicação por 1: 1v = v.

Chamaremos os elementos de E são chamados de **vetores**.

Vetores v_1, v_2, \ldots, v_n são ditos linearmente dependentes se existem $a_1, a_2, \ldots, a_n \in \mathbb{R}$, não todos nulos, tais que

$$a_1v_1 + a_2v_2 + \dots a_nv_n = \mathbf{0}$$

Definição 1. Uma base é qualquer conjunto $B \subset E$ linearmente independente e maximal, isto é, sempre que $v \in E \setminus B$, $B \cup \{v\}$ é linearmente dependente.

Lema 1. Todo elemento de E pode ser escrito unicamente como combinação linear dos elementos de uma base B de E. Em outras palavras, B gera E.

Definição 2. Uma base é qualquer conjunto $B \subset E$ linearmente independente e maximal, isto é, sempre que $v \in E \setminus B$, $B \cup \{v\}$ é linearmente dependente. O tamanho de B é a dimensão de E, ou $\dim(E)$. (mas se existem várias bases, esse valor é único? Mostre que sim).

Lema 2. Se n é maior que dim(E), então os vetores $v_1, v_2, ..., v_n$ são linearmente dependentes.

3 Transformações Lineares

Definição 3. Sejam E, F espaços vetoriais. Uma **transformação linear** de E em F é uma função $A: E \to F$ tal que $A(\alpha u + \beta v) = \alpha A(u) + \beta A(v)$, para todos $\alpha, \beta \in \mathbb{R}$ e $u, v \in E$.

Relembre o sistema de equações introduzido inicialmente. Observe que o nosso sistema, representado por uma matriz A, transforma um vetor de variáveis (os x_i) em um vetor de resultantes (os b_i). Além disso, observe também que $\alpha A(u) + \beta A(v) = A(\alpha u + \beta v)$ e A(u) + B(u) = (A + B)u. Portanto, podemos interpretar a multiplicação por A como **transformação linear** que leva vetores de dimensão n a vetores de dimensão m.

Definição 4. Seja $A: E \to F$ uma transformação linear. $\mathbf{nuc}(A)$ (lê-se $n\'ucleo\ de\ A$) é o subconjunto dos vetores $v \in E$ tais que $Av = \mathbf{0}$.

Definição 5. Seja $A: E \to F$ uma transformação linear. **Im**(A) (lê-se *imagem de A*) é o subconjunto dos vetores $u \in F$ tais que existe $v \in E$ tal que Av = u.

Lema 3. Im(A) é um espaço vetorial cuja dimensão é rank(A), o maior número de colunas linearmente independentes na matriz que representa A.

Lema 4. rank(A) é também o maior número de linhas linearmente dependentes de A.

Teorema 1. O núcleo de A é um subespaço vetorial de E cuja dimensão é dim(E) - rank(A), i.e., dim(nuc) + dim(Im) = dim(E).

4 Outros Corpos

Um corpo é um conjunto portado de duas operações (+, *), adição e multiplicação. Essas operações exibem propriedades semelhantes às operações correspondentes nos reais: associatividade, comutatividade, distributividade, existência de inverso (exceto para o 0), etc. Além disso, corpos possuem elementos neutros distintos de adição (0) e multiplicação (1).

Nas seções anteriores, utilizamos \mathbb{R} como conjunto de base para a multiplicação por escalar e construção de vetores. Entretanto, qualquer corpo pode ser utilizado em vez de \mathbb{R} e todas as propriedades acima continuam garantidas.

Um exemplo de corpo além do \mathbb{R} é o $\mathbb{Z}/p\mathbb{Z}$, o corpo finito dos restos mod p. Você consegue construir outros corpos de tamanho finito?

5 Problemas

Problema 1. Vários matemáticos participam de uma conferência e alguns deles são amigos. Gugu tenta dividi-los em duas salas, A e B, de modo que o número de amigos de cada um em sua respectiva sala é par. Mostre que Gugu pode realizar essa tarefa e que o número de maneiras de realizá-la é uma potência de 2.

Problema 2. (Rioplatense 2011) Para todo inteiro positivo n, sejam $\phi(n)$ o número de inteiros positivos menores que n e coprimos com n e $\gamma(n)$ a soma divisores de n. Determine se existem infinitos inteiros positivos n tais que $\phi(n)\gamma(n)$ é um quadrado perfeito.

Problema 3. (São Petersburgo) Durante o ano letivo, os n estudantes de uma escola organizaram m eventos sociais. Ao fim do ano, percebeu-se que cada par de estudantes esteve junto em exatamente k eventos. Mostre que $n \le m$.

Problema 4. (Russia) m estudantes participam de uma prova com n questões. O valor de cada questão era um real positivo e créditos parciais não foram permitidos. Depois de todas as provas serem corrigidas, percebeu-se que, ao reorganizar os valores das questões, qualquer ranking dos estudantes poderia ser alcançado. Qual o maior valor possível de m?

Problema 5. (Irã TST 1996, Alemanha TST 2004) Em uma grande festa de final de ano, cada convidado recebe dois chapéus: um vermelho e um azul. Ao começar a festa, todos os convidados põem o chapéu vermelho. Várias vezes ao longo da festa, o locutor anuncia o nome de um dos convidados e, nesse momento, o nomeado e cada um de seus amigos trocam o chapéu que estão usando pelo chapéu da outra cor. Demonstre que o locutor pode realizar escolhas convenientes de modo que ao final da festa todos estejam com o chapéu de cor azul.

Problema 6. (Crux) O senado de um determinado país possui 2007 senadores, cada um deles inimigo de alguns outros. Mostre que existe um subconjunto não-vazio de senadores K tal que o número de inimigos de cada senador em K é par.

Problema 7. Sejam $a_1, a_2, \ldots, a_{2n+1}$ números reais tais que, para cada $1 \le i \le 2n+1$, ao removermos a_i , os 2n números remanescentes podem ser divididos em dois conjuntos de mesmo tamanho e soma. Mostre que $a_1 = a_2 = \cdots = a_n$.