## IMC 2020 Online

Day 1, July 26, 2020

Problem 1. Let $n$ be a positive integer. Compute the number of words $w$ (finite sequences of letters) that satisfy all the following three properties:
(1) $w$ consists of $n$ letters, all of them are from the alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$;
(2) $w$ contains an even number of letters a ;
(3) $w$ contains an even number of letters b .
(For example, for $n=2$ there are 6 such words: aa, bb, cc, dd, cd and dc.)
Armend Sh. Shabani, University of Prishtina
Problem 2. Let $A$ and $B$ be $n \times n$ real matrices such that

$$
\operatorname{rk}(A B-B A+I)=1
$$

where $I$ is the $n \times n$ identity matrix.
Prove that

$$
\operatorname{trace}(\mathrm{ABAB})-\operatorname{trace}\left(\mathrm{A}^{2} \mathrm{~B}^{2}\right)=\frac{1}{2} \mathrm{n}(\mathrm{n}-1)
$$

$(\operatorname{rk}(M)$ denotes the rank of matrix $M$, i.e., the maximum number of linearly independent columns in $M$. trace (M) denotes the trace of $M$, that is the sum of diagonal elements in M.)

Rustam Turdibaev, V. I. Romanovskiy Institute of Mathematics
Problem 3. Let $d \geq 2$ be an integer. Prove that there exists a constant $C(d)$ such that the following holds: For any convex polytope $K \subset \mathbb{R}^{d}$, which is symmetric about the origin, and any $\varepsilon \in(0,1)$, there exists a convex polytope $L \subset \mathbb{R}^{d}$ with at most $C(d) \varepsilon^{1-d}$ vertices such that

$$
(1-\varepsilon) K \subseteq L \subseteq K
$$

(For a real $\alpha$, a set $T \subset \mathbb{R}^{d}$ with nonempty interior is a convex polytope with at most $\alpha$ vertices, if $T$ is a convex hull of a set $X \subset \mathbb{R}^{d}$ of at most $\alpha$ points, i.e., $T=\left\{\sum_{x \in X} t_{x} x \mid t_{x} \geq 0, \sum_{x \in X} t_{x}=\right.$ 1\}. For a real $\lambda$, put $\lambda K=\{\lambda x \mid x \in K\}$. A set $T \subset \mathbb{R}^{d}$ is symmetric about the origin if $(-1) T=T$.)

Fedor Petrov, St. Petersburg State University
Problem 4. A polynomial $p$ with real coefficients satisfies the equation $p(x+1)-p(x)=x^{100}$ for all $x \in \mathbb{R}$. Prove that $p(1-t) \geqslant p(t)$ for $0 \leqslant t \leqslant 1 / 2$.

Daniil Klyuev, St. Petersburg State University

## IMC 2020 Online

Day 2, July 27, 2020

Problem 5. Find all twice continuously differentiable functions $f: \mathbb{R} \rightarrow(0,+\infty)$ satisfying

$$
f^{\prime \prime}(x) f(x) \geq 2\left(f^{\prime}(x)\right)^{2}
$$

for all $x \in \mathbb{R}$.
Karen Keryan, Yerevan State University \& American University of Armenia, Yerevan
Problem 6. Find all prime numbers $p$ for which there exists a unique $a \in\{1,2, \ldots, p\}$ such that $a^{3}-3 a+1$ is divisible by $p$.

Géza Kós, Loránd Eötvös University, Budapest
Problem 7. Let $G$ be a group and $n \geq 2$ be an integer. Let $H_{1}$ and $H_{2}$ be two subgroups of $G$ that satisfy

$$
\left[G: H_{1}\right]=\left[G: H_{2}\right]=n \quad \text { and } \quad\left[G:\left(H_{1} \cap H_{2}\right)\right]=n(n-1)
$$

Prove that $H_{1}$ and $H_{2}$ are conjugate in $G$.
(Here $[G: H]$ denotes the index of the subgroup $H$, i.e. the number of distinct left cosets $x H$ of $H$ in $G$. The subgroups $H_{1}$ and $H_{2}$ are conjugate if there exists an element $g \in G$ such that $g^{-1} H_{1} g=H_{2}$.)

Ilya Bogdanov and Alexander Matushkin, Moscow Institute of Physics and Technology
Problem 8. Compute

$$
\lim _{n \rightarrow \infty} \frac{1}{\log \log n} \sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \log k
$$

(Here $\log$ denotes the natural logarithm.)

