IMC 2020 Online

Day 1, July 26, 2020

Problem 1. Let n be a positive integer. Compute the number of words w (finite sequences of letters) that satisfy all the following three properties:

- (1) w consists of n letters, all of them are from the alphabet $\{a, b, c, d\}$;
- (2) w contains an even number of letters a;
- (3) w contains an even number of letters **b**.

(For example, for n = 2 there are 6 such words: aa, bb, cc, dd, cd and dc.)

Armend Sh. Shabani, University of Prishtina

Problem 2. Let A and B be $n \times n$ real matrices such that

$$\operatorname{rk}(AB - BA + I) = 1$$

where I is the $n \times n$ identity matrix.

Prove that

$$\operatorname{trace}(ABAB) - \operatorname{trace}(A^2B^2) = \frac{1}{2}n(n-1).$$

 $(\operatorname{rk}(M) \text{ denotes the rank of matrix } M, \text{ i.e., the maximum number of linearly independent columns in } M. \operatorname{trace}(M) \text{ denotes the trace of } M, \text{ that is the sum of diagonal elements in } M.)$ Rustam Turdibaev, V. I. Romanovskiy Institute of Mathematics

Problem 3. Let $d \ge 2$ be an integer. Prove that there exists a constant C(d) such that the following holds: For any convex polytope $K \subset \mathbb{R}^d$, which is symmetric about the origin, and any $\varepsilon \in (0, 1)$, there exists a convex polytope $L \subset \mathbb{R}^d$ with at most $C(d)\varepsilon^{1-d}$ vertices such that

$$(1-\varepsilon)K \subseteq L \subseteq K.$$

(For a real α , a set $T \subset \mathbb{R}^d$ with nonempty interior is a convex polytope with at most α vertices, if T is a convex hull of a set $X \subset \mathbb{R}^d$ of at most α points, i.e., $T = \{\sum_{x \in X} t_x x \mid t_x \ge 0, \sum_{x \in X} t_x = 1\}$. For a real λ , put $\lambda K = \{\lambda x \mid x \in K\}$. A set $T \subset \mathbb{R}^d$ is symmetric about the origin if (-1)T = T.)

Fedor Petrov, St. Petersburg State University

Problem 4. A polynomial p with real coefficients satisfies the equation $p(x+1) - p(x) = x^{100}$ for all $x \in \mathbb{R}$. Prove that $p(1-t) \ge p(t)$ for $0 \le t \le 1/2$.

Daniil Klyuev, St. Petersburg State University

IMC 2020 Online

Day 2, July 27, 2020

Problem 5. Find all twice continuously differentiable functions $f : \mathbb{R} \to (0, +\infty)$ satisfying

$$f''(x)f(x) \ge 2(f'(x))^2$$

for all $x \in \mathbb{R}$.

Karen Keryan, Yerevan State University & American University of Armenia, Yerevan

Problem 6. Find all prime numbers p for which there exists a unique $a \in \{1, 2, ..., p\}$ such that $a^3 - 3a + 1$ is divisible by p.

Géza Kós, Loránd Eötvös University, Budapest

Problem 7. Let G be a group and $n \ge 2$ be an integer. Let H_1 and H_2 be two subgroups of G that satisfy

 $[G: H_1] = [G: H_2] = n$ and $[G: (H_1 \cap H_2)] = n(n-1).$

Prove that H_1 and H_2 are conjugate in G.

(Here [G:H] denotes the *index* of the subgroup H, i.e. the number of distinct left cosets xH of H in G. The subgroups H_1 and H_2 are *conjugate* if there exists an element $g \in G$ such that $g^{-1}H_1g = H_2$.)

Ilya Bogdanov and Alexander Matushkin, Moscow Institute of Physics and Technology

Problem 8. Compute

$$\lim_{n \to \infty} \frac{1}{\log \log n} \sum_{k=1}^{n} (-1)^k \binom{n}{k} \log k.$$

(Here log denotes the natural logarithm.)

Fedor Petrov, St. Petersburg State University