24^a Semana Olímpica Nível 2 Prof^a. Kellem Corrêa Santos

Teorema Chinês dos Restos

Teorema de Bézout: Sejam a e b inteiros positivos. Então, existem inteiros x e y tais que ax + by = mdc(a,b)

Teorema Chinês dos Restos (versão limitada): Sejam m e n dois inteiros maiores que 1 primos entre si e a e b dois outros inteiros quaisquer. Então, o sistema abaixo tem solução única módulo m.n:

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

Corolário: Sejam m e n dois inteiros maiores que 1 primos entre si e a e b dois outros inteiros quaisquer. Então, $x \equiv a \pmod{mn}$ se, e somente se, ambas as congruências abaixo são válidas:

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

Aquecimento 1: Resolva o sistema

$$\begin{cases} x \equiv 1 \ (mod \ 2) \\ x \equiv 5 \ (mod \ 5) \end{cases}$$

Aquecimento 2: Resolva o sistema

$$\begin{cases} x \equiv 2 \pmod{4} \\ x \equiv 3 \pmod{6} \end{cases}$$

Aquecimento 3: Resolva o sistema

$$\begin{cases} x \equiv 0 \ (mod \ 4) \\ x \equiv 0 \ (mod \ 6) \end{cases}$$

Teorema Chinês dos Restos (versão completa): Sejam $m_1, m_2, ..., m_k$ inteiros maiores que 1 dois a dois primos entre si e $a_1, a_2, ..., a_k$ inteiros quaisquer. Então, o sistema abaixo tem solução **única módulo** $m_1m_2 ... m_k$:

$$\begin{cases} x \equiv a_1 \ (mod \ m_1) \\ \dots \\ x \equiv a_k \ (mod \ m_k) \end{cases}$$

O Teorema Chinês dos Restos garante a existência e a unicidade da solução, porém, não ensina como encontrá-la. É possível provar que a solução é construída da seguinte forma:

$$x\equiv a_1M_1x_1+\ a_2M_2x_2+\cdots+a_kM_kx_k (mod\ M)$$
 onde
$$M=m_1m_2\dots m_k,$$

$$M_i=\frac{M}{m_i},$$

$$x_i\ \text{\'e tal que}\ M_ix_i\equiv 1\ (mod\ m_i).$$

Exercícios:

1) Resolva
$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

2) Resolva
$$\begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 1 \pmod{3} \\ x \equiv 1 \pmod{4} \\ x \equiv 1 \pmod{5} \\ x \equiv 1 \pmod{6} \\ x \equiv 0 \pmod{7} \end{cases}$$

- 3) Resolva $x^2 \equiv 11 \pmod{35}$
- 4) Resolva $\begin{cases} x \equiv 1 \pmod{3} \\ x \equiv 4 \pmod{5} \\ x \equiv 1 \pmod{7} \end{cases}$

5) Resolva
$$\begin{cases} x \equiv 1 \pmod{4} \\ x \equiv 7 \pmod{9} \\ x \equiv 6 \pmod{11} \end{cases}$$

- 6) (Estônia) Determine todos os restos possíveis da divisão do quadrado de um número primo com 120 por 120.
- 7) (USA) Existem 14 inteiros positivos consecutivos tais que cada um é divisível por um ou mais primos p do intervalo $2 \le p \le 11$?
- 8) (USA) Existem 21 inteiros positivos consecutivos tais que cada um é divisível por um ou mais primos do intervalo $2 \le p \le 13$?
- 9) (São Petesburgo) Dado um polinômio F(x) com coeficientes inteiros tal que, para cada inteiro n, o valor de F(n) é divisível por pelo menos um dos inteiros $a_1, a_2, ..., a_m$. Prove que podemos encontrar um índice k tal que F(n) é divisível por a_k para cada inteiro n.
- 10) (Olimpíada Nórdica) Para quais inteiros positivos n existe uma sequência $x_1, x_2, ..., x_n$ contendo cada um dos inteiros 1, 2, ..., n exatamente uma vez e tal que k divide $x_1 + x_2 + ... + x_k$ para k = 1, 2, ..., n?
- 11) (USA) Encontre o menor inteiro positivo n tal que $2^n + 5^n n$ é múltiplo de 1000.
- 12) (Bulgária) Encontre o menor valor positivo para *x* tal que, quando dividido por 7, 9 e 11, deixa restos 3, 4 e 5, respectivamente.
- 13) (China) Suponha que p varia entre todos os primos maiores que 5. Quantos restos distintos possíveis existem na divisão de p^2 por 120?
- 14) (China) Seja N um número que, na base 6, é escrito como 531340. Já na base 8, N vale 124154. Na base 10, qual o resto de N na divisão por 210?