Introdução à Aritmética Modular

Carlos Alex

12 de novembro de 2021

Nessa aula iremos começar uma introdução à aritmética modular, um tópico da Teoria dos Números. Precisamos recordar de alguns conceitos antes:

(I) DIVISIBILIDADE

Dados dois inteiros a e b, com "a" diferente de 0, dizemos que a divide b ou que a é um divisor de b ou ainda que b é um múltiplo de a e escrevemos "a | b" se o r obtido pelo algoritmo de divisão aplicado à a e b é 0, ou seja, se b = a.q para algum inteiro q.

Exemplos:

Veja que $3 \mid 18$, já que 18 = 3.6, mas 3 não divide 26, pois 26 = 2.13. Também, $7 \mid 56$, pois 56 = 7.8, daí, $8 \mid 56$ também. Para todo n pertencente aos naturais $n \mid 6n$, pois 6n = 2.3.n e $3 \mid 3n + 3$, pois 3n + 3 = 3.(n + 1). Da mesma forma $m + 1 \mid m^2 - 1$ para todo m pertencente aos inteiros, pois $m^2 - 1 = (m + 1).(m - 1)$.

Propriedades:

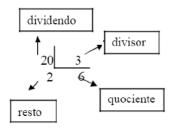
- (I) Se d | a, então $d \le a$.
- (II) Se d | a, então d | a.c, para qualquer $c \in \mathbb{Z}$.
- (III) Se a | b e a | c, então a | b + c. Logo, se d | a e d | b, então d | ax + by, para quaisquer x e y pertencentes a Z.
- (IV) Se a | b e b | c, então a | c (transitividade)

Obs.: Veja que alguns problemas de divisibilidade podem vir disfarçados, pois já que ocorre de b ser múltiplo de a sempre que a | b, então provar que a | b é o mesmo que provar que $\frac{b}{a}$ é um número inteiro.

Teorema: Se p é um número primo e p \mid a.b, então p \mid a ou p \mid b.

(II) ALGORITMO DA DIVISÃO

Em uma divisão temos:



Chegamos no seguinte algoritmo:

$$D = d \cdot q + r$$

(III) ARITMÉTICA MODULAR

Sejam a e b dois inteiros quaisquer e seja m um inteiro positivo fixo. Diz-se que a é congruente a b módulo m se e somente se m divide a diferença a - b.

Em outros termos, a é congruente a b módulo m se e somente se existe um inteiro k tal que $a - b = k \cdot m$

Com a notação

$$a \equiv b \pmod{m}$$

indica-se que a é congruente a b módulo m. Portanto simbolicamente:

$$a \equiv b \pmod{m} \leftrightarrow m \pmod{a - b}$$

ou seja:

$$a \equiv b \pmod{m} \leftrightarrow \exists k \in z \mid a - b = k.m$$

assim por exemplo:

$$3 \equiv 24 \pmod{7}$$
, porque $7 \mid (3 - 24)$

$$-31 \equiv 11 \pmod{6}$$
, porque $6 \mid (-31 - 11)$

$$-15 \equiv -63 \pmod{.8}$$
, porque $8 \mid (-15 - (-63))$

Se m não divide a diferença a - b, então diz-se que a é incongruente a b módulo m, o que se indica pela notação:

$$25 \equiv /12 \pmod{.7}$$
, porque $7 \mid /(25 - 12)$

$$-21 \equiv /(\text{mod.} 5)$$
, porque $5 | /(-21 - 10)$

$$16 \equiv 9 \pmod{4} / (16 - 9)$$

Note-se que dois inteiros quaisquer são congruentes módulo 1, enquanto que dois inteiros são congruentes módulo 2 se ambos são pares ou se ambos são ímpares.

Em particular, se a $\equiv 0 \pmod{m}$ se e somente se o módulo m divide a \pmod{a}

PROPRIEDADES

- (I) a \equiv a (mod. m)
- (II) se a \equiv b (mod. m), então b \equiv a (mod. m)

(III) se a \equiv b (mod. m) e se b \equiv c (mod. m), então a \equiv c (mod. m)

(IV) Se a \equiv b (mod.m) e se n | m, com n > 0, então $a \equiv b \pmod{n}$

(V)Se a \equiv b (mod.m)e se c > 0, então ac \equiv bc (mod.mc)

(**VI**)Se a \equiv b (mod. m)e se a, b e m são todos divisíveis pelo inteiro d > 0, *então* $a/d \equiv b/d \pmod{m/d}$

divisíveis pelo inteiro d > 0, então a/d(VII)Se $a \equiv b \pmod{m}$ e se $c \equiv d \pmod{m}$, então $a + c \equiv b + c \pmod{m}$ e ac $\equiv bd \pmod{m}$ (VIII) Se $\equiv b \pmod{m}$, então $a + c \equiv b + c \pmod{m}$ e ac $\equiv bc \pmod{m}$

(IX) Se $a \equiv b \pmod{m}$, então $a^n \equiv b^n \pmod{m}$ para todo inteiro positivo n.

Pequeno Teorema de Fermat

- $\rightarrow p/a^p-a$; $a \in \mathbb{Z}e \ p \ primo$.
- $\rightarrow a^p \equiv a \pmod{p}$
- $\rightarrow p \ n\tilde{a}o \ divide \ a \Rightarrow p/a^{p-1}-1$
- $\rightarrow p \ n\tilde{a}o \ divide \ a \Rightarrow a^{p-1} \equiv 1 \pmod{p}$

Alguns problemas

Parte 1

- **01.** Qual é o maior inteiro positivo n tal que n + 10 divide $n^3 + 100$?
- **02.** Prove que não existe nenhum inteiro tal que $4 \mid n^2 + 2$.
- **03** Qual é o resto que uma potência ímpar de 2 deixa por 3?
- **04. (OBM)** Quantos pares ordenados de inteiros positivos existem tais que $\frac{2014}{a^2+b^2}$ é inteiro?
- **05.** (**OBM**) Qual é a maior potência de 2 que divide $2011^{2012} 1$?
- **06.** Quantos são os inteiros positivos n tais que $n + 3 \mid n^2 + 7$?

- **07.** Mostre que se $7 \mid 3a + 2b$, então $7 \mid 4a 2b$.
- **08.** Mostre que se $3 \mid a + 7b$, então $3 \mid a + b$.
- **10.** Encontre todos os inteiros positivos n tais que n + 2009 divide $n^2 + 2009$ e n + 2010 divide $n^2 + 2010$.
- **11.** Mostre que se 17 | 3a + 2b então 17 | 10a + b.
- **12. (OBM)** Para quantos inteiros n o número $\frac{n}{100 n}$ é também inteiro?
- 13. (OBM) Determine o número de inteiros positivos n menores que 100 de modo que a fração 8n+5/5n+8 não seja irredutível. Uma fração é chamada de irredutível quando o máximo divisor comum (MDC) entre o seu numerador e o seu denominador é igual a 1.
- **14.** (**Maio**) Encontre todos os pares de números inteiros positivos (a, b) tais que 8b + 1 é múltiplo de a e 8a + 1 é múltiplo de b.
- **15.** (**IMO1959**). Mostre que a fração 21n + 4/14n + 3 é irredutível para todo n natural.
- **16 (OBM)** Para quantos inteiros positivos m o número $\frac{2004}{m^2-2}$ é um inteiro positivo?

Parte 2

- **17.** Verifique as alternativas e marque (V) Verdadeiro ou (F) Falso:
- $(a)()91 \equiv 0 \pmod{.7}$
- $(\mathbf{b})(\)\ 3+5+7 \equiv 5 \pmod{10}$
- $(\mathbf{c})(\quad) -2 \equiv -2 \pmod{.8}$
- $(\mathbf{d})(\)\ 11^2 \equiv 1 \,(\text{mod.}\,3)$
- $(\mathbf{e})(\quad) \ 17 \equiv 9 \ (\text{mod.} \ 2)$
- (f)() $42 \equiv -8 \pmod{10}$
- (g)() $x \equiv 3 \pmod{5} \rightarrow x \in \{..., -7, -2, 3, 8, 13, ...\}$
- **18.** Sabendo que $1066 \equiv 1776 \pmod{m}$, achar todos os possíveis valores do módulo m.
- 19. Achar todos os inteiros \underline{x} tais que $0 \le x < 15 e$ $3x \equiv 6 \pmod{15}$
- **20.** Achar todos os inteiros \underline{x} tais que $1 \le x \le 100$ e $x \equiv 7 \pmod{.17}$

21. Sabendo que $k \equiv 2 \pmod{4}$, mostrar que $6k + 5 \equiv 3 \pmod{4}$

- 22. Mostrar, mediante um exemplo, que $a^2 \equiv b^2 \pmod{m}$ não implica $a \equiv b \pmod{m}$
- **23.** Mostrar que todo primo (exceto 2) é congruente módulo 4 a 1 ou 3.
- **24.** Mostrar que $11^{10} \equiv 1 \pmod{100}$.
- **25.** Mostrar que 41 divide 2²⁰ 1.
- **26.** Determine o resto de 5^{21} por 127.
- **27.** Determine o resto de 2^{20} por 11.
- **28.** Determine o resto de $13^6 2^{25} \cdot 5^{15}$ por 3
- **29.** Achar os restos das divisões de 2^{50} e 41^{65} por 7.
- **30.** Sejam $a, p \in \mathbb{N}$, com p primo. Mostre que se $a^2 \equiv 1 \pmod{p}$, então $a \equiv 1 \pmod{p}$ ou $a \equiv -1 \pmod{p}$
- **31. (OBM)** Prove que existem infinitos inteiros positivos n tais que

$$\frac{5^{n-2}-1}{n}$$

é um inteiro.

- **32.** Calcule o resto de 4^{100} por 3.
- **33.** Calcule o resto de 4^{100} por 5.
- **34.** Calcule o resto de 4^{100} por 7.
- **35.** Qual o resto na divisão de $2^{70} + 3^{70}$ por 13
- **36.** Escreva uma única congruência que é equivalente ao par de congruências $x \equiv 1 \pmod{4}$ e $x \equiv 2 \pmod{3}$.
- **37.** Qual o resto de 3²⁰⁰ por 100?
- **38.** Qual o resto de $36^{36} + 41^{41}$ na divisão por 77?
- **39.** Prove que $p^2 q^2$ é divisível por 24 se p e q são primos maiores que 3.
- **40.** Prove que $n^2 + 1$ não é divisível por 3 para nenhum n inteiro.
- **41.** Qual o resto de $1^{2000} + 2^{2000} + \ldots + 2000^{2000}$ na divisão por 7?

ANOTAÇÕES