43° OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Fase Única – Nível Universitário PRIMEIRO DIA

1. Considere as matrizes da forma

$$M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix} \qquad e \qquad \det M = 1$$

Mostre que

- (a) Há infinitas matrizes da forma acima com todas as entradas *a*, *b*, *c* racionais.
- (b) Há somente um número finito de matrizes da forma acima e todas as entradas *a*, *b*, *c* inteiras.
- **2.** Determine todas as funções $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 (ou seja, f é duas vezes derivável com derivada segunda contínua) tais que $f(t)^2 = f(t\sqrt{2})$ para todo real t.
- **3.** Encontre todos os inteiros positivos k para os quais existem um irracional $\alpha > 1$ e um inteiro positivo N tal que $\lfloor \alpha^n \rfloor$ é da forma $m^2 k$ com m inteiro para todo n inteiro com n > N.

43ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA

Nível Universitário SEGUNDO DIA

4. Para cada inteiro n > 1 seja k(n) o maior inteiro positivo k tal que $n = m^k$ para algum inteiro positivo m. Determine

$$\lim_{n\to\infty}\frac{1}{n}\sum_{j=2}^{n+1}k(j).$$

- **5.** Determine todos as triplas $(\lambda_1, \lambda_2, \lambda_3) \in \mathbb{R}^3$ tais que existe uma matriz real $A_{3\times 3}$ com entradas sendo números reais não negativos, cujos autovalores sejam $\lambda_1, \lambda_2, \lambda_3$.
- **6.** Definimos recursivamente *pares bacanas* de palavras (α, β) nas letras a, b da seguinte forma: (a, b) é um par bacana, e $(\alpha, \beta) \neq (a, b)$ é um par bacana se, e só se, existe um par bacana (u, v) tal que $(\alpha, \beta) = (u, uv)$ ou $(\alpha, \beta) = (uv, v)$. Dizemos que uma palavra $c_1c_2...c_n$, com $c_j \in \{a, b\}, \forall j \leq n$, é um palíndromo se $c_j = c_{n+1-j}, \forall j \leq n$. Prove que, se (α, β) é um par bacana, então $\alpha\beta = a\gamma b$, onde γ é um palíndromo.

Observação: Convencionamos que a palavra vazia (com 0 letras) é um palíndromo. Dadas palavras $u = a_1 a_2 \dots a_k$ e $v = b_1 b_2 \dots b_r$, com $a_i, b_j \in \{a, b\}, \forall i, j, uv$ denota a concatenação de u e v, ou seja, $uv = a_1 a_2 \dots a_k b_1 b_2 \dots b_r$.