IMC 2021 Online

First Day, August 3, 2021

Problem 1. Let A be a real $n \times n$ matrix such that $A^3 = 0$.

(a) Prove that there is a unique real $n \times n$ matrix X that satisfies the equation

$$X + AX + XA^2 = A.$$

(b) Express X in terms of A.

Problem 2. Let *n* and *k* be fixed positive integers, and let *a* be an arbitrary non-negative integer. Choose a random *k*-element subset *X* of $\{1, 2, ..., k + a\}$ uniformly (i.e., all *k*-element subsets are chosen with the same probability) and, independently of *X*, choose a random *n*-element subset *Y* of $\{1, ..., k + n + a\}$ uniformly.

Prove that the probability

$$\mathsf{P}\Big(\min(Y) > \max(X)\Big)$$

does not depend on a.

Problem 3. We say that a positive real number d is good if there exists an infinite sequence $a_1, a_2, a_3, \ldots \in (0, d)$ such that for each n, the points a_1, \ldots, a_n partition the interval [0, d] into segments of length at most 1/n each. Find

$$\sup \Big\{ d \mid d \text{ is good} \Big\}.$$
(10 points)

Problem 4. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. Suppose that for every $\varepsilon > 0$, there exists a function $g : \mathbb{R} \to (0, \infty)$ such that for every pair (x, y) of real numbers,

if
$$|x-y| < \min\{g(x), g(y)\}$$
, then $|f(x) - f(y)| < \varepsilon$.

Prove that f is the pointwise limit of a sequence of continuous $\mathbb{R} \to \mathbb{R}$ functions, i.e., there is a sequence h_1, h_2, \ldots of continuous $\mathbb{R} \to \mathbb{R}$ functions such that $\lim_{n \to \infty} h_n(x) = f(x)$ for every $x \in \mathbb{R}$.

(10 points)

(10 points)

(10 points)

IMC 2021 Online

Second Day, August 4, 2021

Problem 5. Let A be a real $n \times n$ matrix and suppose that for every positive integer m there exists a real symmetric matrix B such that

$$2021B = A^m + B^2.$$

Prove that $|\det A| \leq 1$.

(10 points)

Problem 6. For a prime number p, let $\operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z})$ be the group of invertible 2×2 matrices of residues modulo p, and let S_p be the symmetric group (the group of all permutations) on p elements. Show that there is no injective group homomorphism $\varphi : \operatorname{GL}_2(\mathbb{Z}/p\mathbb{Z}) \to S_p$.

(10 points)

Problem 7. Let $D \subseteq \mathbb{C}$ be an open set containing the closed unit disk $\{z : |z| \leq 1\}$. Let $f : D \to \mathbb{C}$ be a holomorphic function, and let p(z) be a monic polynomial. Prove that

$$|f(0)| \le \max_{|z|=1} |f(z)p(z)|.$$

(10 points)

Problem 8. Let *n* be a positive integer. At most how many distinct unit vectors can be selected in \mathbb{R}^n such that from any three of them, at least two are orthogonal?

(10 points)