IMC 2021 Online

First Day, August 3, 2021

Problem 1. Let A be a real $n \times n$ matrix such that $A^{3}=0$.
(a) Prove that there is a unique real $n \times n$ matrix X that satisfies the equation

$$
X+A X+X A^{2}=A
$$

(b) Express X in terms of A.

Problem 2. Let n and k be fixed positive integers, and let a be an arbitrary non-negative integer. Choose a random k-element subset X of $\{1,2, \ldots, k+a\}$ uniformly (i.e., all k-element subsets are chosen with the same probability) and, independently of X, choose a random n-element subset Y of $\{1, \ldots, k+n+a\}$ uniformly.

Prove that the probability

$$
\mathrm{P}(\min (Y)>\max (X))
$$

does not depend on a.

Problem 3. We say that a positive real number d is good if there exists an infinite sequence $a_{1}, a_{2}, a_{3}, \ldots \in(0, d)$ such that for each n, the points a_{1}, \ldots, a_{n} partition the interval $[0, d]$ into segments of length at most $1 / n$ each. Find

$$
\sup \{d \mid d \text { is good }\} .
$$

(10 points)

Problem 4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. Suppose that for every $\varepsilon>0$, there exists a function $g: \mathbb{R} \rightarrow(0, \infty)$ such that for every pair (x, y) of real numbers,

$$
\text { if }|x-y|<\min \{g(x), g(y)\}, \quad \text { then }|f(x)-f(y)|<\varepsilon .
$$

Prove that f is the pointwise limit of a sequence of continuous $\mathbb{R} \rightarrow \mathbb{R}$ functions, i.e., there is a sequence h_{1}, h_{2}, \ldots of continuous $\mathbb{R} \rightarrow \mathbb{R}$ functions such that $\lim _{n \rightarrow \infty} h_{n}(x)=f(x)$ for every $x \in \mathbb{R}$.
(10 points)

IMC 2021 Online

Second Day, August 4, 2021

Problem 5. Let A be a real $n \times n$ matrix and suppose that for every positive integer m there exists a real symmetric matrix B such that

$$
2021 B=A^{m}+B^{2} .
$$

Prove that $|\operatorname{det} A| \leq 1$.
(10 points)

Problem 6. For a prime number p, let $\mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z})$ be the group of invertible 2×2 matrices of residues modulo p, and let S_{p} be the symmetric group (the group of all permutations) on p elements. Show that there is no injective group homomorphism $\varphi: \mathrm{GL}_{2}(\mathbb{Z} / p \mathbb{Z}) \rightarrow S_{p}$.

Problem 7. Let $D \subseteq \mathbb{C}$ be an open set containing the closed unit disk $\{z:|z| \leq 1\}$. Let $f: D \rightarrow \mathbb{C}$ be a holomorphic function, and let $p(z)$ be a monic polynomial. Prove that

$$
|f(0)| \leq \max _{|z|=1}|f(z) p(z)| .
$$

(10 points)

Problem 8. Let n be a positive integer. At most how many distinct unit vectors can be selected in \mathbb{R}^{n} such that from any three of them, at least two are orthogonal?

