Trigonometria em Geometria

Semana Olímpica 2022 - Pernambuco

Rafael Filipe - rafaelfilipedoss@gmail.com

Este material pressupõe que você saiba as definições básicas de trigonometria, bem como saber lidar com o círculo trigonométrico. Caso você não saiba, este conteúdo pode ser encontrado na maioria dos livros de ensino médio.

1 Principais relações trigonométricas

1.1 Relações fundamentais

- $\sin^2 x + \cos^2 x = 1$;
- $1 + tg^2 x = sec^2 x$.

1.2 Trocas importantes

- $\operatorname{sen}(\pi x) = \operatorname{sen}x;$
- $\cos(\pi x) = -\cos x$;
- $\operatorname{sen}\left(\frac{\pi}{2} x\right) = \cos x;$
- $\cos\left(\frac{\pi}{2} x\right) = \operatorname{sen}x;$
- $\operatorname{sen} x = -\operatorname{sen}(-x);$
- $\cos x = \cos(-x)$.

1.3 Soma e subtração de arcos

- $sen(a + b) = sen a \cdot cos b + sen b \cdot cos a;$
- $\operatorname{sen}(a b) = \operatorname{sen} a \cdot \cos b \operatorname{sen} b \cdot \cos a$;
- $\cos(a+b) = \cos a \cdot \cos b \sin b \cdot \sin a$;
- $\cos(a b) = \cos a \cdot \cos b + \sin b \cdot \sin a$;
- $tg(a+b) = \frac{tg \ a + tg \ b}{1 tg \ a \cdot tg \ b};$
- $tg(a-b) = \frac{tg \ a tg \ b}{1 + tg \ a \cdot tg \ b}$.

1.4 Arco duplo e arco metade

- $\cos 2x = \cos^2 x \sin^2 x$;
- $\cos 2x = 2 \cdot \cos^2 x 1$;
- $\cos 2x = 1 2 \cdot \sin^2 x$;
- $\operatorname{sen} 2x = 2 \cdot \operatorname{sen} x \cdot \cos x$;
- $\operatorname{tg} 2x = \frac{2 \cdot \operatorname{tgx}}{1 \operatorname{tg}^2 x};$
- sen $\frac{x}{2} = \pm \sqrt{\frac{1 \cos x}{2}};$
- $\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}};$
- $\operatorname{tg} \frac{x}{2} = \pm \sqrt{\frac{1 \cos x}{1 + \cos x}}$.

1.5 Transformações de produto em soma

- sen $a \cdot \text{sen } b = \frac{1}{2} \cdot (\cos(a b) \cos(a + b));$
- $\cos \alpha \cdot \cos b = \frac{1}{2} \cdot (\cos(\alpha b) + \cos(\alpha + b));$
- sen $a \cdot \cos b = \frac{1}{2} \cdot (\operatorname{sen}(a+b) + \operatorname{sen}(a-b)).$

1.6 Mudança de fase

• $a \cdot \operatorname{sen} x + b \cdot \operatorname{cos} x = R \cdot \operatorname{sen}(x + \theta)$ sendo $R = \sqrt{a^2 + b^2} e \theta$ tal que $\tan \theta = \frac{b}{a}$.

Transformações de soma em produto

- $\operatorname{sen} a \operatorname{sen} b = 2 \cdot \operatorname{sen} \left(\frac{a b}{2} \right) \cdot \cos \left(\frac{a + b}{2} \right);$ $\operatorname{cos} a \operatorname{cos} b = -2 \cdot \operatorname{sen} \left(\frac{a + b}{2} \right) \cdot \operatorname{sen} \left(\frac{a b}{2} \right).$

Relações métricas no triângulo 2

Convenções iniciais 2.1

A partir de agora, façamos algumas convenções que utilizaremos ao longo deste material. Seja ABC um triângulo. Então:

- Os ângulos são dados por $\angle BAC = \alpha$, $\angle CBA = \beta$ e $\angle ACB = \gamma$;
- Os lados são dados por BC = a, CA = b e AB = c;
- O raio da circunferência circunscrita é R:
- O raio da circunferência inscrita é r;
- O perímetro é $2\mathfrak{p}$, em que $\mathfrak{p}=\frac{a+b+c}{2}$ é o semiperímetro;
- A área do triângulo é S;
- As alturas do triângulo relativa aos vértices A, B e C são h_a , h_b e h_c , respectivamente;
- \bullet Os raios das circunferências exinscritas relativas aos vértices A, B e C são r_a , r_b e $_c$, respectivamente.

2.2Lei dos senos

Teorema 2.1. Em um triângulo ABC vale que

$$\frac{a}{\mathrm{sen}\ \alpha} = \frac{b}{\mathrm{sen}\ \beta} = \frac{c}{\mathrm{sen}\ \gamma} = 2R.$$

Lei dos cossenos

Teorema 2.2. Em um triângulo ABC, vale que:

$$\alpha^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \, \alpha$$

$$b^2 = c^2 + \alpha^2 - 2 \cdot c \cdot \alpha \cdot \cos \, \beta$$

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

2.4 Teorema de Stewart

Teorema 2.3. Seja ABC um triângulo e D um ponto sobre o lado BC. Se $BD = \mathfrak{m}$, $CD = \mathfrak{n}$ e $AD = \mathfrak{d}$, vale que

$$\mathbf{m} \cdot \mathbf{c}^2 + \mathbf{n} \cdot \mathbf{b}^2 = \mathbf{a} \cdot (\mathbf{d}^2 + \mathbf{m} \cdot \mathbf{n}).$$

Outras fórmulas trigonométricas no triângulo 2.5

• sen
$$\frac{\alpha}{2} = \sqrt{\frac{p(p-a)}{bc}};$$

•
$$\cos \frac{\alpha}{2} = \sqrt{\frac{(p-b)(p-c)}{bc}};$$

• sen
$$\frac{\beta}{2} = \sqrt{\frac{p(p-b)}{c\alpha}};$$

$$\bullet \ \cos \, \frac{\beta}{2} = \sqrt{\frac{(p-c)(p-a)}{ca}};$$

• sen
$$\frac{\gamma}{2} = \sqrt{\frac{p(p-c)}{ab}};$$

$$\bullet \; \cos \, \frac{\gamma}{2} = \sqrt{\frac{(p-\alpha)(p-b)}{\alpha b}};$$

•
$$\cos \alpha + \cos \beta + \cos \gamma = 1 + \frac{r}{R}$$
.

Uma ideia muito comum é fazer R=1/2. Nesse caso, pela lei dos senos, temos $\alpha=\mathrm{sen}\ \alpha,\,b=\mathrm{sen}\ \beta$ e $c=\mathrm{sen}\ \gamma.$ Nesse caso, há algumas fórmulas interessantes que podem ser obtidas:

•
$$2p = 4 \cdot \cos \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \cos \frac{\gamma}{2}$$
;

$$\bullet \ S = \frac{\mathrm{sen} \ \alpha \cdot \mathrm{sen} \ \beta \cdot \mathrm{sen} \ \gamma}{2};$$

$$\bullet \ r = 2 \cdot \mathrm{sen} \ \alpha \cdot \mathrm{sen} \ \beta \cdot \mathrm{sen} \ \gamma;$$

•
$$p - a = 2 \cdot \cos \frac{\alpha}{2} \cdot \sin \frac{\beta}{2} \cdot \sin \frac{\gamma}{2}$$
.

•
$$p - b = 2 \cdot \operatorname{sen} \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \operatorname{sen} \frac{\gamma}{2}$$
.

•
$$p - c = 2 \cdot \sin \frac{\alpha}{2} \cdot \sin \frac{\beta}{2} \cdot \cos \frac{\gamma}{2}$$
.

Fórmulas para a área de um triângulo

•
$$S = \frac{a \cdot h_a}{2} = \frac{b \cdot h_b}{2} = \frac{c \cdot h_c}{2}$$
;

$$\bullet \ S = \frac{b \cdot c \cdot \mathrm{sen} \ \alpha}{2} = \frac{c \cdot a \cdot \mathrm{sen} \ \beta}{2} = \frac{a \cdot b \cdot \mathrm{sen} \ \gamma}{2}; \\ \bullet \ S = r_a(p-a) = r_b(p-b) = r_c(p-c);$$

•
$$S = \frac{abc}{4R}$$
;

•
$$S = pr$$
;

$$\bullet \ S=r_{\mathfrak{a}}(p-\mathfrak{a})=r_{\mathfrak{b}}(p-\mathfrak{b})=r_{\mathfrak{c}}(p-\mathfrak{c});$$

$$\bullet \ S = \sqrt{p(p-\alpha)(p-b)(p-c)} \ ({\rm Heron});$$

3 Teoremas avançados

3.1 Teorema da ceviana qualquer

Teorema 3.1. Seja ABC um triângulo e AD uma ceviana, com D sobre BC. Então:

$$\frac{BD}{CD} = \frac{AB}{AC} \cdot \frac{\operatorname{sen}(\angle BAD)}{\operatorname{sen}(\angle CAD)}.$$

3.2 Truque da cotagente

Teorema 3.2. Se $x, y, z, w \in (0, 180^\circ)$ são tais que x + y = z + w e

$$\frac{\operatorname{sen} x}{\operatorname{sen} y} = \frac{\operatorname{sen} z}{\operatorname{sen} w} ,$$

então x = z e y = w.

3.3 Teorema de Ceva trigonométrico

Teorema 3.3. Sejam ABC um triângulo, α_1, α_2 os ângulos que a ceviana AD forma com os lados AB e AC, β_1, β_2 os ângulos que a ceviana BE forma com os lados BA e BC e γ_1, γ_2 os ângulos que a ceviana CF forma com os lados BC e AC. Então AD, BE, CF concorrem se, e somente se,

$$\frac{\mathrm{sen}\ \alpha_1}{\mathrm{sen}\ \alpha_2} \cdot \frac{\mathrm{sen}\ \beta_1}{\mathrm{sen}\ \beta_2} \cdot \frac{\mathrm{sen}\ \gamma_1}{\mathrm{sen}\ \gamma_2} = 1.$$

4 Problemas

4.1 Problemas introdutórios

- 1. Prove que todas as relações apresentadas são verdadeiras.
- **2.** Calcule o seno, o cosseno e a tangente de 0° , 15° , 30° , 45° , 60° , 75° , 90° , 105° , 120° , 135° , 150° , 165° e 180° .
- 3. Calcule o seno e o cosseno de 18° , 24° , 36° , 72° .
- **4.** Em um triângulo ABC, $\angle A = 60^{\circ}$ e $\angle B = 45^{\circ}$. Se BC = 4, quanto vale AC?
- **5.** Em um triângulo ABC, $\angle A = 60^{\circ}$, AB = 3 e BC = 4, quanto vale AC?
- 6. Calcule os valores de r, R, r_a , sen α , cos α em função dos lados a, b, c.
- 7. Calcule os comprimentos da altura, mediana e bissetriz relativas ao vértice A em função de $a,b,c,\alpha,\beta,\gamma$.
- 8. Sejam I, G, H, O o incentro, baricentro, ortocentro e circuncentro, respectivamente. Calcule as distâncias HG, GO, OH, IO, IG, IH em função de $a, b, c, \alpha, \beta, \gamma$.
- 9. Seja M o ponto médio do lado BC. Calcule as distâncias IM, GM, HM, OM em função de $a, b, c, \alpha, \beta, \gamma$.
- 10. As bissetrizes internas dos ângulos $\angle A$ e $\angle C$ do triângulo ABC cortam-se no ponto I. Sabe-se que AI = BC e que $\angle ICA = 2\angle IAC$. Determine a medida do ângulo $\angle ABC$.

4.2 Problemas gerais

- 11. Seja ABCD um quadrilátero inscrito em uma circunferência de diâmetro AD. Se AB = BC = 1 e AD = 3, determine o comprimento da corda CD.
- **12.** Em um triângulo ABC, \angle BAC = 100° e AB = AC. Seja BD a bissetriz de \angle ABC, com D sobre o lado AC. Prove que AD + BD = BC.
- 13. Seja ABCD inscritível com AB = 4, BC = 5, CD = 6 e DA = 7. Sejam A_1 e C_1 os pés das perpendiculares por A e C à reta BD, respectivamente, e B_1 e D_1 os pés das perpendiculares por B e D à reta AC, respectivamente. Determine o perímetro do quadrilátero $A_1B_1C_1D_1$.
- **14.** Um círculo está inscrito no trapézio isósceles ABCD. Sejam K e L os pontos de interseção do círculo com AC (com K entre A e L). Encontre o valor de $\frac{AL \cdot KC}{AK \cdot LC}$.
- **15.** Seja ABCD um quadrilátero inscritível em uma circunferência de centro O e suponha que AC seja um diâmetro. As diagonais AC e BD se intersectam em P e BO intersecta o segmento CD em Q. Sabendo que \angle BPC = 45° e PB = 1 + $\sqrt{3}$, determine $\frac{DQ}{CO}$.
- **16.** Seja ABCD um quadrilátero tal que \angle ABC = \angle ADC = 135° e

$$AC^2 \cdot BD^2 = 2 \cdot AB \cdot BC \cdot CD \cdot DA$$
.

Prove que AC e BD são perpendiculares.

- 17. O triângulo ABC é tal que $\angle C = 60^{\circ}$ e BC = 4. Seja D o ponto médio de BC. Qual é o maior valor possível para a tangente do ângulo $\angle BAD$?
- **18.** No triângulo ABC, de circunraio R, seja T o pé da bissetriz do vértice A. Prove que

$$\frac{AB \cdot AC}{AT} + \max\{AB, \ AC\} \leq 4R \cdot \cos\left(\frac{\angle A}{4}\right)$$

e descubra os casos de igualdade.

19. Seja ABC um triângulo de circuncentro O e ortocentro H tal que \angle BAC = 60° e AB > AC. Sejam também BE, CF as alturas relativas aos lados CA, AB, respectivamente, e M, N pontos sobre os segmentos BH, HF, respectivamente, tais que BM = CN. Determino o valor da expressão $\frac{HM+HN}{HO}$.

20. Seja P um ponto interior ao triângulo ABC tal que

$$\angle APC - \angle ABC = \angle APB - \angle ACB$$
.

Sejam D e E os incentros dos triângulos APB e APC, respectivamente. Prove que as retas BD, CE e AP passam por um ponto em comum.

- 21. Seja Γ uma circunferência de centro O tangente aos lados AB e AC do triângulo ABC nos pontos E e F. A reta perpendicular ao lado BC por O intercepta EF no ponto D. Mostre que A, D e M são colineares.
- **22.** Seja A_1 o centro de um quadrado inscrito no triângulo acutângulo ABC com dois vértices do quadrado em BC. Assim, um dos dois vértices restantes está em AB e o outro em AC. Os pontos B_1 e C_1 são definidos de modo análogo. Prove que as retas AA_1 , BB_1 e CC_1 são concorrentes.
- 23. Seja ABCD um trapézio com AB \parallel CD e inscrito na circunferência Γ . Sejam P e Q dois pontos no segmento AB (A, P, Q, B estão nessa ordem e são distintos) tais que AP = QB. Sejam E e F os segundos pontos de interseção das retas CP e CQ com Γ , respectivamente. As retas AB e EF intersectam-se em G. Demonstre que a reta DG é tangente a Γ .
- **24.** Sejam ABC um triângulo acutângulo e Γ a sua circunferência circunscrita. Seja D um ponto no segmento BC, distinto de B e de C, e seja M o ponto médio de AD. A reta perpendicular a AB que passa por D intersecta AB em E e Γ em F, com o ponto D entre E e F. As retas FC e EM intersectam-se no ponto X. Se \angle DAE = \angle AFE, mostre que a reta AX é tangente a Γ .
- **25.** No interior do triângulo ABC é dado um ponto M. A reta BM intersecta o lado AC em N. O ponto K é simétrico de M com relação a AC. A reta BK intersecta AC em P. Se \angle AMP = \angle CMN, prove que \angle ABP = \angle CBN.
- **26.** Seja ABC um triângulo com circuncírculo Γ e incentro I e seja M o ponto médio de BC. Os pontos D, E, F são escolhidos nos lados BC, CA, AB tais que ID \perp BC, IE \perp AI e IF \perp AI. Suponha que o circuncírculo do triângulo AEF intersecta Γ no ponto X diferente de A. Prove que as retas XD e AM se intersectam sobre Γ .