Brincando com Tabuleiros - Nível 2 SO 2022

Prof^a Laís Nuto

24 de janeiro de 2023

 Nesse material vamos trabalhar um poucos diferentes ideias com questões de tabuleiros, usando colorações, contagens espertas e outras estratégias interessantes.

PROBLEMA 1. Ana e Beto jogam em um tabuleiro de 11 linhas e 9 colunas. Primeiro, Ana divide o tabuleiro em 33 zonas. Cada zona é formada por 3 casas adjacentes da forma 1×3 ou 3×1 . Depois Beto escreve em cada casinha 1x1 do tabuleiro os números 0, 1, 2, 3, 4, 5 de modo que a soma de cada zona seja igual a 5. Beto ganha se a soma dos números escritos em cada coluna é um número primo. Demonstre que Beto tem a estratégia vencedora.

PROBLEMA 2. Arrumam-se 2007^2 quadradinhos iguais, formando um tabuleiro 2007×2007 . Arnaldo e Bernaldo disputam o seguinte jogo: cada jogada de Arnaldo consiste em retirar 4 quadradinhos que formem um quadrado 2×2 . Cada jogada de Bernaldo consiste em retirar apenas 1 quadradinho. Os jogadores jogam alternadamente, sendo Arnaldo o primeiro a jogar. Quando Arnaldo não puder fazer sua jogada, Bernaldo fica com todas as peças restantes do tabuleiro. Ganha o jogo aquele que possuir mais quadradinhos no final. É possível que Bernaldo ganhe o jogo, não importando como Arnaldo jogue?

PROBLEMA 3. Os inteiros de 1 até 2008^2 são escritos em cada quadradinho de um tabuleiro 2008×2008 . Para cada linha e cada coluna, a diferença entra o valor máximo e valor mínimo dos números é guardada. Seja S a soma desses 4016 números. Encontre o maior valor possível de S.

PROBLEMA 4. Sejam $m, n \ge 4$ e considere uma região retangular (2m - 1) \times (2n - 1) que será coberta com peças do tipo:

Figura 1: Questão 4

As peças podem ser rotacionadas e/ou refletidas. Qual é o número mínimo necessário de peças para cobrir a região sem buracos , nem sobreposição e nem sem sair do tabuleiro?

PROBLEMA 5. Um dominó é uma peça de tamanho 1×2 ou 2×1 . Seja $n \ge 3$ um inteiro. Dominós são colocados em um tabuleiro quadriculado $n \times n$ de maneira que cada dominó cobre exatamente 2 casas do tabuleiro e os dominós não se sobrepõem. O valor de uma linha ou coluna do tabuleiro é o número de dominós que cobre pelo menos uma casa dessa linha ou coluna. Uma configuração de dominós no tabuleiro é chamada balanceada se existe algum $k \ge 1$ tal que cada linha e cada coluna tem valor k.

Prove que uma configuração balanceada existe para todo $n \geq 3$, e encontre o menor número de dominós necessários para tal configuração.

PROBLEMA 6. Um dominó é uma peça 2×1 ou 1×2 . Determine de quantas maneiras podemos colocar exatamente N^2 dominós, sem sobreposições, em um tabuleiro $2N\times 2N$ de forma que todo quadrado 2×2 contém pelo menos dois quadrados 1×1 vazios que estão na mesma linha ou coluna.

PROBLEMA 7. Seja M um inteiro positivo. Considere um tabuleiro com $4M \times 4M$ quadradinhos. Dois quadradinhos diferentes são *relacionados* um com o outro se eles estão na mesma linha ou na mesma coluna. Nenhum quadradinho é *relacionado* com ele mesmo. Alguns quadradinhos são coloridos de azul, tal que cada quadradinho é *relacionado* com pelo menos dois quadradinhos azuis. Determine o número mínimo de quadradinhos azuis

Bons estudos!