de Matemática

Homotetia
Prof.Luciano Monteiro de Castro
lucianogmcastro@gmail.com
@matematicamentexyz

Problemas

1. Two lines l_{1} and l_{2} and a point A are given. Pass a line l through A so that the segment $B C$ cut off by l_{1} and l_{2} satisfies $A B: A C=m: n$.
2. (a) A circle S and a point A on it are given. Find the locus of the midpoints of all the chords through A.
(b) A circle S and three points A, B, and C on it are given. Draw a chord $A X$ that bisects the chord $B C$.
3. Let two tangent circles R and S be given. Let l be a line through the point M of tangency, and let this line meet R in a second point A and meet S in a second point B. Show that the tangent to R at A is parallel to the tangent to S at B.
4. Let R and S be two disjoint circles, neither inside the other. Let m be a common tangent to R and S and assume that R and S are both on the same side of m. Let n be another common tangent, with R and S both on the same side of n. Let M be the point of intersection of m and n. Let l be a line through M meeting R in points A and B, and meeting S in points C and D. Finally, let E be the point of tangency of m and R, and let F be the point of tangency of m and S. Prove that:
(a) Triangle ABE is similar to triangle CDF.
(b) The ratio of the areas of triangles $A B E$ and $C D F$ is equal to the square of the ratio of the radii of R and S.
(c) The line determined by the points of intersection of the medians of triangles ABE and CDF passes through the point M.
5. Let $A B C D$ be a trapezoid whose sides $A D$ and $B C$, extended, meet in a point M; let N be the point of intersection of the diagonals AC and BD. Prove that:
(a) The circles R and S circumscribed about triangles $A B M$ and DCM are tangent.
(b) The circles R_{1} and S_{1} circumscribed about triangles $A B N$ and CDN are tangent.
(c) The ratio of the radii of R_{1} and S_{1} is equal to the ratio of the radii of R and S.
6. (a) Using the two parallel sides $A B$ and $C D$ of trapezoid $A B C D$ as bases construct equilateral triangles $A B E$ and CDF. These triangles should each be on the same side of the base (that is, if we regard $A B$ and $C D$ as being horizontal, then either both triangles are constructed above the base, or both are constructed below the base). Prove that the line EF passes through the point of intersection of the extensions of the two nonparallel sides of the trapezoid.
(b) On the parallel sides $A B$ and $C D$ of the trapezoid, construct squares exterior to the trapezoid. Prove that the line joining their center passes through the point of intersection of the diagonals of the trapezoid.
7. Prove that the line joining the midpoints of the two parallel sides of a trapezoid passes through the point of intersection of the extensions of the other two sides, as well as through the point of intersection of the diagonals.
8. (a) Two concentric circles S_{1} and S_{2} are given. Draw a line l meeting these circles consecutively in points A, B, C, D such that $A B=B C=C D$. (b) Three concentric circles S_{1}, S_{2} and S_{3} are given. Draw a line l meeting S_{1}, S_{2} and S_{3} in order in points A, B, and C such that $A B=B C$. (c) Four concentric circles S_{1}, S_{2}, S_{3} and S_{4} are given. Draw a line l meeting S_{1}, S_{2}, S_{3} and S_{4} respectively in points A, B, C, D such that $A B=C D$.
9. (a) Inscribe a square in a given triangle $A B C$ so that two vertices lie on the base $A B$, and the other two lie on the sides $A C$ and BC.
(b) In a given triangle $A B C$ inscribe a triangle whose sides are parallel to three given lines l_{1}, l_{2} and l_{3}.
10. (a) Two lines l_{1} and l_{2} are given together with a point A on l_{1} and a point B on l_{2}. Draw segments $A M_{1}$ and $B M_{2}$ on the lines l_{1} and l_{2} having a given ratio $A M_{1} / B M_{2}=m$, and through the points M_{1} and M_{2} pass lines parallel to two given lines l_{3} and l_{4} (Figure 11). Find the locus of the points of intersection of these lines.
(b) A polygon $A_{1} A_{2} \cdots A_{n}$ varies in such a way that its sides remain parallel to given directions, and the vertices $A_{1}, A_{2}, \cdots, A_{n-1}$ move on given lines $l_{1}, l_{2}, \cdots, l_{n-1}$. Find the locus of the vertex A_{n}.
(c) In a given polygon inscribe another polygon whose sides are parallel to given lines.
11. Let a "hinged" parallelogram $A B C D$ be given. More precisely, the lengths of the sides are fixed, and vertices A and B are fixed, but vertices C and D are movable (Figure 12). Prove that, as C and D move, the point Q of intersection of the diagonals moves along a circle.
12. (a) Let the inscribed circle S of $\triangle A B C$ meet $B C$ at the point D. Let the escribed circle which touches $B C$ and the extensions of sides $A B$ and $A C$ meet $B C$ at the point E. Prove that $A E$ meets S at the point D_{1} diametrically opposite to D.
(b) Construct triangle $A B C$, given the radius r of the inscribed circle, the altitude $h=A P$ on side $B C$, and the difference $b-c$ of the two other sides.
13. Construct a circle S
(a) tangent to two given lines l_{1} and l_{2} and passing through a given point A.
(b) passing through two given points A and B and tangent to a given line l.
(c) tangent to two given lines l_{1} and l_{2} and to a given circle S.
14. (a) Prove that the point M of intersection of the medians of triangle $A B C$, the center O of the circumscribed circle, and the point H of intersection of the altitudes lie on a line, and that $\mathrm{HM} / \mathrm{MO}=2 / 1$.
(b) Prove that the three lines through the midpoints of the sides of a triangle and parallel to the bisectors of the opposite angles meet in a single point.
(c) Prove that the lines joining the vertices of triangle $A B C$ to the points where the opposite sides are tangent to the corresponding escribed circles meet in a single point J . This point is collinear with the point M of intersection of the medians and the center Z of the inscribed circle, and $J M / M Z=2 / 1$.
15. Inscribe a triangle $A B C$ in a given circle S, if the vertex A and the point H of intersection of the altitudes are given.
16. Given a circle S. What is the locus of the points of intersection of the (a) medians, (b) altitudes, of all possible acute angled triangles inscribed in S; of all right angled triangles inscribed in S; of all obtuse angled triangles inscribed in S?
17. In the triangle $A B C, A B=A C$. A circle is tangent internally to the circumcircle of the triangle and also to $A B, A C$ at P, Q respectively. Prove that the midpoint of $P Q$ is the center of the incircle of the triangle.
18. Three circles of equal radius have a common point O and lie inside a given triangle. Each circle touches a pair of sides of the triangle. Prove that the incenter and the circumcenter of the triangle are collinear with the point O.
19. A non-isosceles triangle $A_{1} A_{2} A_{3}$ has sides a_{1}, a_{2}, a_{3} with a_{i} opposite $A_{i} . M_{i}$ is the midpoint of side a_{i} and T_{i} is the point where the incircle touches side a_{i}. Denote by S_{i} the reflection of T_{i} in the interior bisector of angle A_{i}. Prove that the lines $M_{1} S_{1}, M_{2} S_{2}$ and $M_{3} S_{3}$ are concurrent.
20. Theorem on the three centers of similarity. Let the figure F_{1} be centrally similar to the figure F with similarity center O_{1}, and let it also be centrally similar to the figure F^{\prime} with similarity center O_{2}. If O_{1} does not coincide with O_{2}, then the line $\mathrm{O}_{1} \mathrm{O}_{2}$ passes through the center of similarity O of the figures F and F^{\prime}, or is parallel to the direction of the translation carrying F into F^{\prime}. If O_{1} coincides with O_{2}, then O_{1} is the center of similarity also for F and F^{\prime}.

If O_{1} is different from O_{2} then the line $\mathrm{O}_{1} \mathrm{O}_{2}$ is called the axis of similarity of the three figures $\mathrm{F}, \mathrm{F}_{1}$ and F^{\prime}; if O_{1} coincides with O_{2} then this point is called the center of similarity of the figures F, F_{1} any F^{\prime}.
Usually the theorem on the three centers of similarity is formulated somewhat less precisely as follows: the three centers of similarity of three pairwise centrally similar figures lie on a line.

Quase todos os problemas desta lista foram retirados do excelente livro "Geometric Transformations II", de I. M Yaglom (MAA, New Mathematical Library ,21), publicado em 1968. Disponível em www.ams.org.

