OW 2023 - N2

Regis Barbosa

Part 1

Theorem 1 (Chord Theorem - "Power of a Point"). Let Γ be a circle, and P a point. Let a line through P meet Γ at points A and B, and let another line through P meet Γ at points C and D. Then

$$
P A \cdot P B=P C \cdot P D
$$

If P lies outside Γ and we draw $P T$ tangent to Γ at T, then

$$
P A \cdot P B=P C \cdot P D=P T^{2}
$$

Proof.

For the first case, we have $\angle P D A=\angle P B C(\operatorname{arc} A C)$ and $\angle D P A=\angle B P C$ (opposite at $P)$. So $\triangle P D A \sim \triangle P B C(A A)$ and

$$
\frac{P A}{P C}=\frac{P D}{P B} \Leftrightarrow P A \cdot P B=P C \cdot P D
$$

In the second case, we also have $\triangle P D A \sim \triangle P B C(A A)$ and $P A \cdot P B=P C \cdot P D$.
For the other part we have $\angle P D T=\angle P T C \quad$ (arc $C T), \quad \angle D P T=\angle T P C \quad$ and $\triangle P D T \sim \triangle P T C(A A)$. The ratio of the sides gives us

$$
\frac{P T}{P C}=\frac{P D}{P T} \Leftrightarrow P T^{2}=P C \cdot P D
$$

Theorem 2 (Converse to power of a point). Let A, B, C, D be four distinct points. Let lines $A B$ and $C D$ intersect at P. Assume that either
(1) P lies on both line segments $A B$ and $C D$, or
(2) P lies on neither line segments.

Then A, B, C, D are concyclic if and only if $P A \cdot P B=P C \cdot P D$
Proof.
Suppose that P lies on both line segments $A B$ and $C D$. We have $\angle D P A=\angle B P C$ (opposite at P) and

$$
P A \cdot P B=P C \cdot P D \Leftrightarrow \frac{P A}{P C}=\frac{P D}{P B} \Leftrightarrow \triangle P D A \sim \triangle P B C \Leftrightarrow \angle P D A=\angle P B C
$$

This occur iff A, B, C, D are concyclic.
Case (2) is analogous.

Problems

1. (AMC/2020-12B) In unit square $A B C D$ the inscribed circle ω intersects $C D$ at M and $A M$ intersects ω at a point P different from M. What is $A P$?
(A) $\frac{\sqrt{5}}{12}$
(B) $\frac{\sqrt{5}}{10}$
(C) $\frac{\sqrt{5}}{9}$
(D) $\frac{\sqrt{5}}{8}$
(E) $\frac{2 \sqrt{5}}{15}$
2. (AIME I/2019) In convex quadrilateral $K L M N$ side $M N$ is perpendicular to diagonal $K M$, side $K L$ is perpendicular to diagonal $L N, M N=65$, and $K L=28$. The line through L perpendicular to side $K N$ intersects diagonal $K M$ at O with $K O=8$. Find $M O$.
3. (Brazil/2013) Let Γ be a circle and A a point outside Γ. The tangent lines to Γ through A touch Γ at B and C. Let M be the midpoint of $A B$. The segment $M C$ meets Γ again at D and the line $A D$ meets Γ again at E. Given that $A B=a, B C=b$, compute $C E$ in terms of a and b.
4. (USAMO/1998) Let C_{1} and C_{2} be concentric circles, with C_{2} in the interior of C_{1}. Let A be a point on C_{1} and B a point on C_{2} such that $A B$ is tangent to C_{2}. Let C be the second point of intersection of $A B$ and C_{1}, and let D be the midpoint of $A B$. A line passing through A intersects C_{2} at E and F in such a way that the perpendicular bisectors of $D E$ and $C F$ intersect at a point M on $A B$. Find, with proof, the ratio $A M / M C$.
5. (Russia/2012) Consider the parallelogram $A B C D$ with obtuse angle A. Let H be the foot of perpendicular from A to the side $B C$. The median from C in triangle $A B C$ meets the circumcircle of triangle $A B C$ at the point K. Prove that points K, H, C and D lie on the same circle.
6. (IMO 2000) Two circles Γ_{1} and Γ_{2} intersect at M and N. Let ℓ be the common tangent to Γ_{1} and Γ_{2} so that M is closer to ℓ than N is. Let ℓ touch Γ_{1} at A and Γ_{2} at B. Let the line through M parallel to ℓ meet the circle Γ_{1} again at C and the circle Γ_{2} again at D. Lines $C A$ and $D B$ meet at E; lines $A N$ and $C D$ meet at $P ;$ lines $B N$ and $C D$ meet at Q. Show that $E P=E Q$.

Part 2

Definition (Power of a Point) The power of a point P with respect to a circle Γ of center O and radius r is defined by

$$
\operatorname{Pot}_{\Gamma} P=P O^{2}-r^{2}
$$

Theorem 3. If P is inside the circle Γ and a line through P cuts Γ at A and B, then

$$
P A \cdot P B=-\operatorname{Pot}_{\Gamma} P
$$

If P is outside the circle Γ, a line through P cuts Γ at A and B and a line through P is tangent to Γ at T, then

$$
P A \cdot P B=P T^{2}=P o t_{\Gamma} P
$$

Proof.

The line $O P$ cross the circle on points E and F.
On the first case we have $P E=r+P O$ and $P F=r-P O$. By the Chrod Theorem

$$
P A \cdot P B=P E \cdot P F=(r+P O)(r-P O)=r^{2}-P O^{2}=-P o t_{\Gamma} P
$$

The second case is analogous.

Problems

7. (AMC/2013-10A) In $\triangle A B C, A B=86$, and $A C=97$. A circle with center A and radius $A B$ intersects $B C$ at points B and X. Moreover $B X$ and $C X$ have integer lengths. What is $B C$?
(A) 11
(B) 28
(C) 33
(D) 61
(E) 72
8. (AIME I/2019) Let $A B$ be a chord of a circle ω, and let P be a point on the chord $A B$. Circle ω_{1} passes through A and P and is internally tangent to ω. Circle ω_{2} passes through B and P and is internally tangent to ω. Circles ω_{1} and ω_{2} intersect at points P and Q. Line $P Q$ intersects ω at X and Y. Assume that $A P=5, P B=3, X Y=11$, and $P Q^{2}=\frac{m}{n}$, where m and n are relatively prime positive integers. Find $m+n$.
9. (Euler's relation) In a triangle with circumcenter O, incenter I, circumradius R, and inradius r, prove that

$$
O I^{2}=R^{2}-2 R r
$$

10. (Tuymaada/2012) Point P is taken in the interior of the triangle $A B C$, so that

$$
\angle P A B=\angle P C B=\frac{1}{4}(\angle A+\angle C)
$$

Let L be the foot of the angle bisector of $\angle B$. The line $P L$ meets the circumcircle of $\triangle A P C$ at point Q. Prove that $Q B$ is the angle bisector of $\angle A Q C$.
11. (China/2013) Two circles K_{1} and K_{2} of different radii intersect at two points A and B, let C and D be two points on K_{1} and K_{2}, respectively, such that A is the midpoint of the segment $C D$. The extension of $D B$ meets K_{1} at another point E, the extension of $C B$ meets K_{2} at another point F. Let l_{1} and l_{2} be the perpendicular bisectors of $C D$ and $E F$, respectively.
i) Show that l_{1} and l_{2} have a unique common point (denoted by P).
ii) Prove that the lengths of $C A, A P$ and $P E$ are the side lengths of a right triangle.
12. (IMO Shortlist/2011) Let $A_{1} A_{2} A_{3} A_{4}$ be a non-cyclic quadrilateral. Let O_{1} and r_{1} be the circumcenter and the circumradius of the triangle $A_{2} A_{3} A_{4}$. Define O_{2}, O_{3}, O_{4} and r_{2}, r_{3}, r_{4} in a similar way. Prove that

$$
\frac{1}{O_{1} A_{1}^{2}-r_{1}^{2}}+\frac{1}{O_{2} A_{2}^{2}-r_{2}^{2}}+\frac{1}{O_{3} A_{3}^{2}-r_{3}^{2}}+\frac{1}{O_{4} A_{4}^{2}-r_{4}^{2}}=0
$$

Part 3

Theorem 4. (Radical Axis) Given two circles Γ_{1} and Γ_{2} with different centers, the locus of the points P on the plane such that the power of P with respect to Γ_{1} is equal the power of P with respect to $\Gamma_{2}\left(\operatorname{Pot}_{\Gamma_{1}} P=\operatorname{Pot}_{\Gamma_{2}} P\right)$ is a line perpendicular to the line through the centers of Γ_{1} and Γ_{2}.

Proof. Let O_{1} and r_{1} be the center and the radius of Γ_{1} and O_{2} and r_{2} be the center and the radius of Γ_{2}. Consider Cartesian coordinates where $O_{1}(0,0)$ and $O_{2}(k, 0)$ with $k \neq 0$ because the circles are non-concentric.

The point $P(x, y)$ have the same power when

$$
\begin{gathered}
\operatorname{Pot}_{\Gamma_{1}} P=\operatorname{Pot}_{\Gamma_{2}} P \Leftrightarrow P O_{1}^{2}-r_{1}^{2}=P O_{2}^{2}-r_{2}^{2} \\
\Leftrightarrow x^{2}+y^{2}-r_{1}^{2}=(x-k)^{2}+y^{2}-r_{2}^{2} \Leftrightarrow-r_{1}^{2}=-2 k x+k^{2}-r_{2}^{2} \\
\Leftrightarrow 2 k x=k^{2}+r_{1}^{2}-r_{2}^{2} \Leftrightarrow x=\frac{k^{2}+r_{1}^{2}-r_{2}^{2}}{2 k}
\end{gathered}
$$

As x has a fixed value, we conclude that the points lie on a line perpendicular to the x axis.

Problems

13. Let ω and γ be two circles intersecting at P and Q. Let their common external tangent touch ω at A and γ at B . Prove that $P Q$ passes through the midpoint M of $A B$.
14. (USAMO/2009) Given circles ω_{1} and ω_{1} intersecting at points X and Y, let ℓ_{1} be a line through the center of ω_{1} intersecting ω_{2} at points P and Q and let ℓ_{2} be a line through the center of ω_{2} intersecting ω_{1} at points R and S. Prove that if P, Q, R and S lie on a circle then the center of this circle lies on line $X Y$.
15. (Russia/2014) A trapezoid $A B C D$ with bases $A B$ and $C D$ is inscribed into circle Ω. A circle ω passes through the point C and D, and intersects the segments $C A$ and $C B$ at $A_{1} \neq C$ and $B_{1} \neq D$, respectively. The points A_{2} and B_{2} are symmetric to A_{1} and B_{1} with respect to the midpoints of $C A$ and $C B$, respectively. Prove that the points A, B, A_{2} and B_{2} are concyclic.
16. (AIME II/2019) In acute triangle $A B C$ points P and Q are the feet of the perpendiculars from C to $A B$ and from B to $A C$, respectively. Line $P Q$ intersects the circumcircle of $\triangle A B C$ in two distinct points, X and Y and. Suppose $X P=10, P Q=25$, and $Q Y=15$. The value of $A B$. $A C$ can be written in the form $m \sqrt{n}$ where m and n are positive integers, and n is not divisible by the square of any prime. Find $m+n$.
17. (Japan/2011) Let $A B C$ be a given acute triangle and let M be the midpoint of $B C$. Draw the perpendicular $H P$ from the orthocenter H of $A B C$ to $A M$. Show that $A M \cdot P M=B M^{2}$.
18. (Iran TST/2011) In acute triangle $A B C$ angle B is greater than angle C. Let M is midpoint of $B C$. Let D and E are the feet of the altitude from C and B, respectively. Let K and L are midpoint of $M E$ and $M D$, respectively. If $K L$ intersect the line through A parallel to $B C$ in T, prove that $T A=T M$.
19. (IMO Shortlist/1995) $A B C$ is a triangle. A circle through B and C meets the side $A B$ again at C^{\prime} and meets the side $A C$ again at B^{\prime}. Let H be the orthocenter of $A B C$ and H^{\prime} the orthocenter of $A B^{\prime} C^{\prime}$. Show that the lines $B B^{\prime}, C C^{\prime}$ and $H H^{\prime}$ are concurrent.
20. (IMO/2013) Let $A B C$ be an acute-angled triangle with orthocentre H, and let W be a point on the side $B C$, lying strictly between B and C. The points M and N are the feet of the altitudes from B and C, respectively. Denote by ω_{1} the circumcircle of $B W N$, and let X be the point on ω_{1} such that $W X$ is a diameter of ω_{1}. Analogously, denote by ω_{2} the circumcircle of $C W M$, and let Y be the point on ω_{2} such that $W Y$ is a diameter of ω_{2}. Prove that X, Y and H are collinear.

Part 4

Theorem 5. (Radical Center) Given three circles, no two concentric, the three pairwise radical axes are either concurrent or all parallel. In the last case, the three centers are collinear.

Proof. Let Γ_{1}, Γ_{2} and Γ_{3} be the three circles with centers O_{1}, O_{2} and O_{3} respectively. Let r_{12} be radical axis of Γ_{1} and Γ_{2} and r_{23} be the radical axis of Γ_{2} and Γ_{3}.
If r_{12} and r_{23} are parallel, then $O_{1} O_{2}$ and $O_{2} O_{3}$ are parallel. The point O_{2} is common and the three centers are collinear. The third radical axis r_{13} is perpendicular to the line through the centers and parallel to the other radical axes.
If r_{12} and r_{23} are not parallel, then they meet at point C.

$$
\operatorname{Pot}_{\Gamma_{1}} C=\operatorname{Pot}_{\Gamma_{2}} C=\operatorname{Pot}_{\Gamma_{3}} C \Rightarrow \operatorname{Pot}_{\Gamma_{1}} C=\operatorname{Pot}_{\Gamma_{3}} C \Rightarrow C \in r_{13}
$$

Problems

21. (USAMO/1997) Let $A B C$ be a triangle. Take points D, E, F on the perpendicular bisectors of $B C, C A, A B$ respectively. Show that the lines through A, B, C perpendicular to $E F, F D, D E$ respectively are concurrent (or parallel).
22. (IberoAmerican/1999) An acute triangle $\triangle A B C$ is inscribed in a circle with center O. The altitudes of the triangle are $A D, B E$ and $C F$. The line $E F$ cut the circumference on P and Q.
a) Show that $O A$ is perpendicular to $P Q$.
b) If M is the midpoint of $B C$, show that $A P^{2}=2 \cdot A D \cdot O M$.
23. (AIME I/2016) Circles ω_{1} and ω_{2} intersect at points X and Y. Line ℓ is tangent to ω_{1} and ω_{2} at A and B, respectively, with line $A B$ closer to point X than to Y. Circle ω passes through A and B intersecting ω_{1} again at $D \neq A$ and intersecting ω_{2} again at $C \neq B$. The three points C, Y, D are collinear, $X C=67, X Y=47$ and $X D=37$. Find $A B^{2}$.
24. (IMO 1995) Let A, B, C and D be four distinct points on a line, in that order. The circles with diameters $A C$ and $B D$ intersect at X and Y. The line $X Y$ meets $B C$ at Z. Let P be a point on the line $X Y$ other than Z. The line $C P$ intersects the circle with diameter $A C$ at C and M, and the line $B P$ intersects the circle with diameter $B D$ at B and N. Prove that the lines $A M, D N$, and $X Y$ are concurrent.
25. (IMO Shortlist/2009) Let $A B C$ be a triangle. The incircle of $A B C$ touches the sides $A B$ and $A C$ at the points Z and Y, respectively. Let G be the point where the lines $B Y$ and $C Z$ meet, and let R and S be points such that the two quadrilaterals $B C Y R$ and $B C S Z$ are parallelograms. Prove that $G R=G S$.
26. (IMO Shortlist/2011) Let $A B C$ be an acute triangle with circumcircle Ω. Let B_{0} be the midpoint of $A C$ and let C_{0} be the midpoint of $A B$. Let D be the foot of the altitude from A, and let G be the centroid of the triangle $A B C$. Let ω be a circle through B_{0} and C_{0} that is tangent to the circle Ω at a point $X \neq A$. Prove that the points D, G, and X are collinear.

Hints and Solutions

1. https://artofproblemsolving.com/wiki/index.php/2020_AMC_12B_Problems/Problem_10
2. https://artofproblemsolving.com/wiki/index.php/2019_AIME_I_Problems/Problem_6
3. https://artofproblemsolving.com/community/c6h559591p3256063
4. https://artofproblemsolving.com/wiki/index.php/1998_USAMO_Problems/Problem_2
5. https://artofproblemsolving.com/community/c6h481928p2699657
6. https://artofproblemsolving.com/wiki/index.php/2000_IMO_Problems/Problem_1
7. https://artofproblemsolving.com/wiki/index.php/2013_AMC_10A_Problems/Problem_23
8. https://artofproblemsolving.com/wiki/index.php/2019_AIME_I_Problems/Problem_15
9. The bisector $A I$ meets the circumcircle at point M. It is well known that $I M=B M$. By the Law of Sines $I M=B M=2 R \cdot \sin \frac{A}{2}$. Let D be the projection of I on $A C$. On the right triangle $A D I$ we have $\sin \frac{A}{2}=$ $\frac{A D}{A I} \Leftrightarrow A I=\frac{r}{\sin \frac{A}{2}} . \quad$ By Power of a Point, $\quad P o t_{(A B C)} I=O I^{2}-R^{2}=-A I \cdot I M=-\frac{r}{\sin \frac{A}{2}} \cdot 2 R \cdot \sin \frac{A}{2}=$ $-2 R r \Rightarrow O I^{2}=R^{2}-2 R r$.
10. https://artofproblemsolving.com/community/c6h490077p2747903
11. https://artofproblemsolving.com/community/c6h516103p2902648
12. https://artofproblemsolving.com/community/c6h488825p2739321
13. Let X be the intersection of $P Q$ and $A B \cdot X A^{2}=X P \cdot X Q=X B^{2} \Rightarrow X A=X B \Rightarrow X=M$.
14. https://artofproblemsolving.com/wiki/index.php/2009_USAMO_Problems/Problem_1
15. https://artofproblemsolving.com/community/c6h587995p3480814
16. https://artofproblemsolving.com/wiki/index.php/2019_AIME_II_Problems/Problem_15
17. Consider the figure. $A D, B E$ and $C F$ are the altitudes. P, E and F are on the circle of diameter $A H$, because $\angle A F H=$ $\angle A E H=\angle A P H=90^{\circ}$.

The quadrilateral $B F E C$ is cyclic and M is its circucmcenter $\left(\angle B F C=\angle B E C=90^{\circ}\right)$. Using the angles of $\triangle A F C$, we have $\angle F C E=\angle F C A=90^{\circ}-A$. By central angle, $\angle F M E=2$. $\angle F C E=180^{\circ}-2 A$. The triangle $F M E$ is isosceles and $\angle M F E=$ $\angle M E F=\frac{180^{\circ}-\angle F M E}{2}=A$. Then $\angle M E F=\angle M F E=A=\angle E A F$, $M E$ and $M F$ are tangent to the circle of diameter $A H$ and by power of a point $M P \cdot M A=M E^{2}=M B^{2}$.

Note: this point P is known as Humpty point.
18. https://artofproblemsolving.com/community/c6h405937p2266382
19. https://artofproblemsolving.com/community/c6h29893p185022
20. https://artofproblemsolving.com/community/c6h1181533p5720174
21. https://artofproblemsolving.com/wiki/index.php/1997_USAMO_Problems/Problem_2
22. https://artofproblemsolving.com/community/c6h83883p483869
23. https://artofproblemsolving.com/wiki/index.php/2016_AIME_I_Problems/Problem_15
24. https://artofproblemsolving.com/community/c6h60435p365179
25. https://artofproblemsolving.com/community/c6h355790p1932935
26. https://artofproblemsolving.com/community/c6h488829p2739327

