Alguns problemas sobre recorrência

Carlos Gustavo Moreira IMPA

- 1) Seja n um inteiro e $(x_n)_{n\geq 1}$ a sequência dada por $x_1=n$ e, para cada $n\geq 1$, $x_{n+1}=x_n^2-x_n+1$. Prove que, para todo $n\geq 1$, se p é divisor primo de x_n então p>n.
- 2) (P6-OBMU-2011). Seja $(x_n)_{n\geq 0}$ uma sequência de números inteiros não todos nulos que satisfaz uma recorrência linear de ordem k para um certo inteiro positivo k fixado, i.e., existem constantes reais c_1, c_2, \ldots, c_k tais que $x_{n+k} = \sum_{r=1}^k c_r x_{n+k-r}, \forall n \geq 0$. Suponha que k é o menor inteiro positivo com essa propriedade. Prove que $c_j \in \mathbb{Z}$ para todo j com $1 \leq j \leq k$.
- 3) (P3-OBM-Níveis 3 e U-2021). Encontre todos os inteiros positivos k para os quais existe um irracional $\alpha > 1$ e um inteiro positivo N tal que $\lfloor \alpha^n \rfloor$ é um quadrado perfeito menos k para todo n inteiro com n > N.

Observação: |x| é o maior inteiro que é menor ou igual a x.

- **4)** (P3-OBMU-2022). Seja $(a_n)_{n\in\mathbb{N}}$ uma sequência de inteiros. Definimos $a_n^{(0)}=a_n$, para todo n natural. Para todo inteiro $M\geq 0$, definimos $(a_n^{(M+1)})_{n\in\mathbb{N}}$: $a_n^{(M+1)}=a_{n+1}^{(M)}-a_n^{(M)}, \forall n\in\mathbb{N}$. E dizemos que $(a_n)_{n\in\mathbb{N}}$ é (M+1)-autorreferente se existem k_1 e k_2 naturais fixados, tais que $a_{n+k_1}=a_{n+k_2}^{(M+1)}, \forall n\in\mathbb{N}$.
 - a) Existe uma sequência de inteiros tal que o menor M para o qual ela é M-autorreferente é M=2022?
 - b) Existe uma sequência estritamente crescente de inteiros positivos tal que o menor M para o qual ela é M-autorreferente é M=2022?