Sequências Recorrentes

Carlos Gustavo Moreira

IMPA

Sequências recorrentes são sequências x_0, x_1, x_2, \ldots em que cada termo é determinado por uma dada função dos termos anteriores. Dado um inteiro positivo k, uma sequência recorrente de ordem k é uma sequência em que cada termo é determinado como uma função dos k termos anteriores:

$$x_{n+k} = f(x_{n+k-1}, x_{n+k-2}, \dots, x_{n+1}, x_n), \quad \forall \ n \in \mathbb{N}.$$

Com essa generalidade, o estudo geral de seqüências recorrentes se confunde em larga medida com a teoria dos Sistemas Dinâmicos, e o comportamento de tais seqüências pode ser bastante caótico e de descrição muito difícil, mesmo qualitativamente. Um caso particular muito importante ocorre quando a função f é linear: existem constantes c_1, c_2, \ldots, c_n com

$$x_{n+k} = c_1 x_{n+k-1} + c_2 x_{n+k-2} + \dots + c_k x_n, \quad \forall \ n \in \mathbb{N}.$$

Tais seqüências são conhecidas como seqüências recorrentes lineares, e generalizam simultaneamente as progressões geométricas, aritméticas e os polinômios. Estas seqüências serão o objeto principal dessas notas. Não obstante, algumas recorrências não-lineares serão consideradas, como a recorrência $x_{n+1} = x_n^2 - 2$, que tem grande interesse do ponto de vista de sistemas dinâmicos e por suas aplicações à teoria dos números.

Essas notas, adaptadas do texto de um mini-curso dado pelo autor na II Bienal da SBM, são inspiradas no excelente livreto "Seqüências Recorrentes", de A. Markuchevitch, publicado na coleção "Iniciação na matemática", da editora MIR, no qual o autor aprendeu bastante sobre o tema no início de sua formação matemática. A seção 4, onde é deduzida a fórmula para o termo geral de uma seqüência recorrente linear, é adaptada do artigo "Equações de recorrência", de Héctor Soza Pollman, publicado no número 9 da revista Eureka! (de fato, o artigo original

submetido à revista enunciava esta fórmula sem demonstração, a qual foi incluída no artigo pelo autor destas notas, que é um dos editores da Eureka!).

1 – Seqüências recorrentes lineares:

Uma sequência $(x_n)_{n\in\mathbb{N}}$ é uma sequência recorrente linear de ordem k (onde k é um inteiro positivo) se existem constantes (digamos reais ou complexas) c_1, c_2, \ldots, c_k tais que

$$x_{n+k} = \sum_{j=1}^{k} c_j x_{n+k-j} = c_1 x_{n+k-1} + c_2 x_{n+k-2} + \dots + c_k x_n, \quad \forall \ n \in \mathbb{N}.$$

Tais sequências são determinadas pelos seus k primeiros termos $x_0, x_1, \ldots, x_{k-1}$.

Os exemplos mais simples (e fundamentais, como veremos a seguir) de seqüências recorrentes lineares são as progressões geométricas: se $x_n = a \cdot q^n$ então $x_{n+1} = qx_n$, $\forall n \in \mathbb{N}$, donde (x_n) é uma seqüência recorrente linear de ordem 1.

Se (x_n) é uma progressão aritmética, existe uma constante r tal que $x_{n+1} - x_n = r$, $\forall n \in \mathbb{N}$, donde $x_{n+2} - x_{n+1} = x_{n+1} - x_n$, $\forall n \in \mathbb{N}$, e logo $x_{n+2} = 2x_{n+1} - x_n$, $\forall n \in \mathbb{N}$, ou seja, (x_n) é uma seqüência recorrente linear de ordem 2.

Se $x_n = P(n)$ onde P é um polinômio de grau k, então (x_n) satisfaz a recorrência linear de ordem k+1 dada por

$$x_{n+k+1} = \sum_{j=0}^{k} (-1)^j \binom{k+1}{j+1} x_{n+k-j}, \quad \forall \ n \in \mathbb{N}.$$
 (*)

Isso é evidente se k=0 (isto é, se P é constante), pois nesse caso (*) se reduz a $x_{n+1}=x_n$, $\forall n \in \mathbb{N}$, e o caso geral pode ser provado por indução: se P é um polinômio de grau $k \geq 1$ então Q(x) = P(x+1) - P(x) é um polinômio de grau k-1, donde $y_n = x_{n+1} - x_n = Q(n)$ satisfaz a recorrência $y_{n+k} = \sum_{j=0}^{k-1} (-1)^j \binom{k}{j+1} y_{n+k-1-j}, \forall n \in \mathbb{N}$, donde

$$x_{n+k+1} - x_{n+k} = \sum_{j=0}^{k-1} (-1)^j \binom{k}{j+1} (x_{n+k-j} - x_{n+k-j-1}), \quad \forall \ n \in \mathbb{N},$$

e logo

$$x_{n+k+1} = \sum_{j=0}^{k} (-1)^j {k \choose j+1} + {k \choose j} x_{n+k-j} = \sum_{j=0}^{k} (-1)^j {k+1 \choose j+1} x_{n+k-j}, \forall n \in \mathbb{N}.$$

Um outro exemplo é dado por seqüências do tipo $x_n = (an + b) \cdot q^n$, onde $a, b \in q$ são constantes. Temos que $x_{n+1} - qx_n = (a(n+1) + b)q^{n+1} - q(an+b) \cdot q^n = q^{n+1}(a(n+1) + b - (an+b)) = aq^{n+1}$ é uma progressão geométrica de razão q, e logo $x_{n+2} - qx_{n+1} = q(x_{n+1} - qx_n)$, donde $x_{n+2} = 2qx_{n+1} - q^2x_n$, $\forall n \in \mathbb{N}$, e portanto (x_n) é uma seqüência recorrente linear de ordem 2.

Vamos agora considerar a famosa e popular seqüência de Fibonacci, dada por $u_0 = 0$, $u_1 = 1$ e $u_{n+2} = u_{n+1} + u_n$, $\forall n \in \mathbb{N}$. Seus primeiros termos são $u_0 = 0$, $u_1 = 1$, $u_2 = 1$, $u_3 = 2$, $u_4 = 3$, $u_5 = 5$, $u_6 = 8$, $u_7 = 13$, $u_8 = 21$, ... Mostraremos na próxima seção como achar uma fórmula explícita para seu termo geral u_n em função de n, o que será generalizado para seqüências recorrentes lineares quaisquer, e veremos algumas de suas propriedades aritméticas.

Antes porém, concluiremos esta seção com alguns fatos gerais sobre seqüências recorrentes lineares, que serão úteis nas seções subsequentes.

O conjunto das sequências que satisfazem uma dada recorrência linear

$$x_{n+k} = \sum_{j=1}^{k} c_j x_{n+k-j}, \quad \forall \ n \in \mathbb{N}$$

é um espaço vetorial, isto é, dadas duas seqüências (y_n) e (z_n) que satisfazem esta recorrência (ou seja, $y_{n+k} = \sum_{j=1}^k c_j y_{n+k-j}$ e $z_{n+k} = \sum_{j=1}^k c_j z_{n+k-j}$, $\forall n \in \mathbb{N}$) e uma constante a, a seqüência (w_n) dada por $w_n = y_n + az_n$ satisfaz a mesma recorrência: $w_{n+k} = \sum_{j=1}^k c_j w_{n+k-j}$, $\forall n \in \mathbb{N}$.

É bastante usual, dada uma seqüência (x_n) , estudar a seqüência obtida pela soma de seus n primeiros termos $s_n = \sum_{k \le n} x_k$. Se (x_n) é uma seqüência recorrente linear, (s_n) também é. De fato, $s_{n+1} - s_n = \sum_{k \le n+1} x_k - \sum_{k \le n} x_k = x_{n+1}$, $\forall n \in \mathbb{N}$. Se $x_{n+k} = \sum_{j=1}^k c_j x_{n+k-j}$, temos

$$s_{n+k+1} - s_{n+k} = \sum_{j=1}^{k} c_j (s_{n+k+1-j} - s_{n+k-j}), \forall n \in \mathbb{N}, \text{ donde}$$

$$s_{n+k+1} = (1+c_1)s_{n+k} + \sum_{j=1}^{k-1} (c_{j+1} - c_j)s_{n+k-j} - c_k s_n = \sum_{i=1}^{k+1} d_i s_{n+k+1-i}$$

onde $d_1 = 1 + c_1$, $d_i = c_i - c_{i-1}$ para $2 \le i \le k$ e $d_{k+1} = -c_k$, $\forall n \in \mathbb{N}$, e portanto (s_n) é uma seqüência recorrente linear de ordem k+1.

2 - A seqüência de Fibonacci:

A seqüência de Fibonacci é definida por $u_0=0,\ u_1=1$ e $u_{n+2}=u_{n+1}+u_n,\ \forall\ n\in\mathbb{N}.$ Queremos achar uma fórmula explícita para u_n em função de n. Para isso usaremos uma idéia que será bastante útil também no caso geral: procuraremos progressões geométricas que satisfazem a mesma recorrência que (u_n) : se $x_n=a\cdot q^n$ com a e q não nulos satisfaz $x_{n+2}=x_{n+1}+x_n,\ \forall\ n\in\mathbb{N},$ teremos $a\cdot q^{n+2}=a\cdot q^{n+1}+a\cdot q^n=a\cdot q^n(q+1),$ donde $q^2=q+1.$ Temos assim dois valores possíveis para q: as duas raízes da equação $q^2-q-1=0,$ que são $\frac{1+\sqrt{5}}{2}$ e $\frac{1-\sqrt{5}}{2}$. Assim, seqüências da forma $a\left(\frac{1+\sqrt{5}}{2}\right)^n$ e da forma $a\left(\frac{1-\sqrt{5}}{2}\right)^n$ satisfazem a recorrência acima, bem como seqüências da forma $y_n=a\left(\frac{1+\sqrt{5}}{2}\right)^n+b\left(\frac{1-\sqrt{5}}{2}\right)^n$, pela observação da seção anterior.

Basta agora encontrar valores de a e b tais que $y_0=0$ e $y_1=1$ para que tenhamos $y_n=u_n$ para todo n (de fato, teríamos $y_0=u_0,\ y_1=u_1$ e, por indução se $k\geq 2$ e $y_n=U_n$ para todo n< k, temos $y_k=y_{k-1}+y_{k-2}=u_{k-1}+u_{k-2}=u_k$). Para isso, devemos ter:

$$\begin{cases} a+b=0\\ a\left(\frac{1+\sqrt{5}}{2}\right)+b\left(\frac{1-\sqrt{5}}{2}\right)=1 \end{cases}$$

e portanto $a = \frac{1}{\sqrt{5}}$ e $b = -\frac{1}{\sqrt{5}}$. Mostramos assim que

$$u_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right), \quad \forall \ n \in \mathbb{N}.$$

É curioso que na fórmula do termo geral de uma seqüência de números inteiros definida de modo tão simples quanto (u_n) apareçam números irracionais.

Provaremos a seguir uma identidade útil sobre números de Fibonacci:

Proposição: $u_{m+n} = u_m u_{n-1} + u_{m+1} u_n, \forall m, n \in \mathbb{N}, n \geq 1.$

Prova: Sejam $y_m = u_{m+n}$ e $z_m = u_m u_{n-1} + u_{m+1} u_n$. Temos que (y_n) e (z_n) satisfazem a recorrência $x_{n+2} = x_{n+1} + x_n$, $\forall n \in \mathbb{N}$. Por outro lado, $y_0 = u_n$, $y_1 = u_{n+1}$, $z_0 = 0 \cdot u_{n-1} + 1 \cdot u_n = u_n = y_0$ e $z_1 = 1 \cdot u_{n-1} + 1 \cdot u_n = u_{n+1} = y_1$, e portanto, como antes, $z_n = y_n$, $\forall n \in \mathbb{N}$.

Podemos usar este fato para provar o seguinte interessante fato aritmético sobre a sequência (u_n) , que pode ser generalizado para as chamadas sequências de Lucas, as quais são úteis para certos testes de primalidade:

Teorema: $\operatorname{mdc}(u_m, u_n) = u_{\operatorname{mdc}(m,n)}, \forall m, n \in \mathbb{N}.$

Prova: Observemos primeiro que $\operatorname{mdc}(u_n,u_{n+1})=1, \forall n\in\mathbb{N}$. Isso vale para n=0 pois $u_1=1$ e, por indução, $\operatorname{mdc}(u_{n+1},u_{n+2})=\operatorname{mdc}(u_{n+1},u_{n+1}+u_n)=\operatorname{mdc}(u_{n+1},u_n)=1$. Além disso, se m=0, $\operatorname{mdc}(u_m,u_n)=\operatorname{mdc}(0,u_n)=u_n=u_{\operatorname{mdc}(m,n)}, \ \forall n\in\mathbb{N}$, e se m=1, $\operatorname{mdc}(u_m,u_n)=\operatorname{mdc}(1,u_n)=1=u_1=u_{\operatorname{mdc}(m,n)}, \ \forall n\in\mathbb{N}$. Vamos então provar o fato acima por indução em m. Suponha que a afirmação do enunciado seja válida para todo m< k (onde $k\geq 2$ é um inteiro dado) e para todo $n\in\mathbb{N}$. Queremos provar que ela vale para m=k e para todo $n\in\mathbb{N}$, isto é, que $\operatorname{mdc}(u_k,u_n)=u_{\operatorname{mdc}(k,n)}$ para todo $n\in\mathbb{N}$. Note que, se n< k, $\operatorname{mdc}(u_k,u_n)=\operatorname{mdc}(u_n,u_k)=u_{\operatorname{mdc}(n,k)}=u_{\operatorname{mdc}(k,n)}$, por hipótese de indução. Já se $n\geq k$, $u_n=u_{(n-k)+k}=u_{n-k}u_{k-1}+u_{n-k+1}u_k$, e logo $\operatorname{mdc}(u_k,u_n)=\operatorname{mdc}(u_k,u_{n-k}u_{k-1}+u_{n-k+1}u_k)=\operatorname{mdc}(u_k,u_{n-k}u_{k-1})=\operatorname{mdc}(u_k,u_{n-k})$ (pois $\operatorname{mdc}(u_k,u_{k-1})=1$) = $u_{\operatorname{mdc}(k,n-k)}=u_{\operatorname{mdc}(k,n)}$.

Corolário: Se $m \ge 1$ e m é um divisor de n então u_m divide u_n . Além disso, se $m \ge 3$ vale a recíproca: se u_m divide u_n então m divide n.

3 - A recorrência $x_{n+1} = x_n^2 - 2$

Consideremos as seqüências $(x_n)_{n\in\mathbb{N}}$ de números reais que satisfazem a recorrência $x_{n+1}=x_n^2-2, \ \forall \ n\in\mathbb{N}$. Suponha que $x_0=\alpha+\alpha^{-1}$ para um certo α (real ou complexo). Então podemos provar por indução que $x_n=\alpha^{2^n}+\alpha^{-2^n}, \ \forall \ n\in\mathbb{N}$. De fato, se vale a fórmula para x_n , teremos

$$x_{n+1} = x_n^2 - 2 = (\alpha^{2^n} + \alpha^{-2^n})^2 - 2 = \alpha^{2^{n+1}} + 2 + \alpha^{-2^{n+1}} - 2 = \alpha^{2^{n+1}} + \alpha^{-2^{n+1}}.$$

Se
$$|x_0| > 2$$
, temos $x_0 = \alpha + \alpha^{-1}$ para $\alpha = \frac{x_0 + \sqrt{x_0^2 - 4}}{2} \in \mathbb{R}$.

Se $|x_0| \leq 2$, vale a mesma fórmula para α , mas nesse caso α é um número complexo de mótulo 1, e pode ser escrito como $\alpha = e^{i\theta} = \cos \theta + i \sin \theta$. Nesse caso, $x_n = e^{2^n i\theta} + e^{-2^n i\theta} = (\cos(2^n\theta) + i \sin(2^n\theta)) + (\cos(2^n\theta) - \sin(2^n\theta)) = 2\cos(2^n\theta)$.

Podemos ver isso de outra forma: se $|x_0| \leq 2$, escrevemos $x = 2\cos\theta$, com $\theta \in [0, \pi]$. Podemos mostrar então por indução que $x_n = 2\cos(2^n\theta)$, para todo $n \in \mathbb{N}$. De fato, $x_{n+1} = x_n^2 - 2 = 4\cos^2(2^n\theta) - 2 = 2(2\cos^2(2^n\theta) - 1) = 2\cos(2^{n+1}\theta)$, pois $\cos(2x) = 2\cos^2 x - 1$, $\forall x \in \mathbb{R}$. Podemos usar esta expressão para obter diversos tipos de comportamento possível para uma tal seqüência (x_n) . Se $x_0 = 2\cos\theta$ e θ/π é racional e tem representação binária periódica de período m então $(x_n) = (2\cos(2^n\theta))$ é periódica de período m. Por outro lado, podemos ter $x_0 = 2\cos\theta$ onde θ/π tem representação binária como

0,01000110110000010100111100101110111...

em que todas as seqüências finitas de zeros e uns aparecem em algum lugar (isso acontece para a "maioria" dos valores de θ).

Nesse caso, a sequência $(x_n) = (2\cos(2^n\theta))$ é densa em [-2, 2], isto é, qualquer ponto de [-2, 2] pode ser apromado por elementos de (x_n) , com erro arbitrariamente pequeno.

No caso em que x_0 é um inteiro, a seqüência (x_n) pode ter propriedades aritméticas muito interessantes. Em particular, se $x_0 = 4$ (e logo $x_n = (2 + \sqrt{3})^{2^n} + (2 - \sqrt{3})^{2^n}$, $\forall n \in \mathbb{N}$) vale o famoso critério de Lucas-Lehmer para testar a primalidade de números de Mersenne: se $n \geq 3$ então $2^n - 1$ é primo se e somente se $2^n - 1$ é um divisor de x_{n-2} (por exemplo, $2^3 - 1 = 7$ é primo e é um divisor de $x_{3-1} = x_1 = x_0^2 - 2 = 4^2 - 2 = 14$).

Exercício: Seja $x_0 \ge 3$ um inteiro ímpar.

- i) Prove que se p é um número primo então existe no máximo um valor de $n \in \mathbb{N}$ tal que p divide x_n .
- ii) Prove que se p é um fator primo de x_n então p > n.

Sugestão: Considere a sequência $x_n \pmod{p}$.

Esse exercício pode ser generalizado para outras recorrências. Nesse caso particular da recorrência $x_{n+1} = x_n^2 - 2$ é possível mostrar um resltado mais forte: se p é um fator primo de x_n então $p \ge 2^{n+2} - 1$ (note que quando $p = 2^q - 1$ é primo, com $q \ge 3$ e n = q - 2, vale a igualdade $p = 2^{n+2} - 1$ e $p|x_n$, pelo critério de Lucas-Lehmer enunciado acima).

4 - Fórmulas gerais para seqüências recorrentes lineares:

Considere a equação

$$a_k x_{n+k} + a_{k-1} x_{n+k-1} + \dots + a_0 x_n = 0, \quad n \ge 0$$
 (2)

em que a_0, \ldots, a_k são constantes, e os valores de x_i são conhecidos para $i = 0, \ldots, k-1$. Supondo que a equação (2) admite uma solução do tipo: $x_n = \lambda^n$, em que λ é um parâmetro, e substituindo em (2) temos

$$a_k \lambda^{n+k} + a_{k-1} \lambda^{n+k-1} + \dots + a_0 \lambda^n = 0.$$

Dividindo por λ^n , obtemos a equação característica associada a equação (2)

$$a_1 \lambda^k + a_{k-1} \lambda^{k-1} + \dots + a_0 \lambda^0 = 0.$$

Vamos mostrar que se esta equação tem as raízes complexas $\lambda_1, \ldots, \lambda_r$ com multiplicidades $\alpha_1, \alpha_2, \ldots, \alpha_r \in \mathbb{N}$, respectivamente, então as soluções de (2) são exatamente as seqüências (x_n) da forma $x_n = Q_1(n)\lambda_1^n + Q_2(n)\lambda_2^n + \cdots + Q_r(n)\lambda_r^n$, onde Q_1, \ldots, Q_r são polinômios com grau $(Q_i) < \alpha_i$, $1 \le i \le r$ (em particular, se λ_i é uma raiz simples então Q_i é constante).

Seja
$$P(x) = a_k x^k + a_{k-1} x^{k-1} + \dots + a_0$$
 um polinômio.

Definição: Dizemos que uma seqüência $(x_n)_{n\in\mathbb{N}}$ satisfaz a propriedade $\operatorname{Rec}(P(x))$ se $a_k x_{n+k} + a_{k-1} x_{n+k-1} + \cdots + a_0 x_n = 0, \forall n \in \mathbb{N}$. Não é difícil verificar os seguintes fatos:

- i) Se (x_n) e (y_n) satisfazem $\operatorname{Rec}(P(x))$ e $c \in \mathbb{C}$ então $(z_n) = x_n + cy_n$ satisfaz $\operatorname{Rec}(P(x))$.
- ii) Se $Q(x) = b_r x^r + b_{r-1} x^{r-1} + \dots + b_0$ e (x_n) satisfaz $\operatorname{Rec}(P(x))$ então (x_n) satisfaz $\operatorname{Rec}(P(x)Q(x))$ (isso segue de $\sum_{j=0}^r b_j(a_k x_{n+j+k} + a_{k-1} x_{n+j+k-1} + \dots + a_0 x_{n+j}) = 0, \forall n \in \mathbb{N}$)
- iii) (x_n) satisfaz $\operatorname{Rec}(P(x))$ se e só se $(y_n) = (x_n/\lambda^n)$ satisfaz $\operatorname{Rec}(P(\lambda x))$ (substitua $x_{n+j} = \lambda^{n+j} y_{n+j}$ em $\sum_{j=0}^k a_j x_{n+j} = 0$).
- iv) Se $s_n = \sum_{k=0}^n x_k$ então (x_n) satisfaz $\operatorname{Rec}(P(x))$ se e só se (s_n) satisfaz $\operatorname{Rec}((x-1)P(x))$ (escreva $x_{n+j+1} = s_{n+j+1} s_{n+j}$ e substitua em $\sum_{j=0}^n a_j x_{n+j+1} = 0$).

Por iii), para ver que, para todo polinômio Q(x) de grau menor que $m, x_n = Q(n)\lambda^n$ satisfaz $\operatorname{Rec}((x-\lambda)^m)$, basta ver que $(y_n) = (Q(n))$ satisfaz $\operatorname{Rec}((x-1)^m)$, o que faremos por indução. Isso é claro que m=1, e em geral, se $z_n=y_{n+1}-y_n=Q(n+1)-Q(n)$, como $\tilde{Q}(x)=Q(x+1)-Q(x)$ tem grau menor que m-1, (z_n) satisfaz $\operatorname{Rec}((x-1)^{m-1})$ (por hipótese de indução), e logo, por (iv), (Y_n) satisfaz $\operatorname{Rec}((x-1)^m)$. Essa observação, combinada com ii) e i), mostra que se $P(x)=(x-\lambda_1)^{\alpha_1}(x-\lambda_2)^{\alpha_2}(x-\lambda_2)^{\alpha_2}\dots(x-\lambda_r)^{\alpha_r}$, e grau $(Q_i)<\alpha_i$ para $1\leq i\leq r$ então $x_n=\sum_{i=1}^r Q_i(n)\lambda_i^n$ satisfaz $\operatorname{Rec}(P(x))$.

Para ver que se (x_n) satisfaz Rec(P(x)) então x_n é da forma acima, usaremos indução novamente.

Supomos $\lambda_1 \neq 0$ e tomamos $y_n = x_n/\lambda_1^n$, $z_n = y_{n+1} - y_n$, para $n \geq 0$.

Por iii) e iv), z_n satisfaz $\operatorname{Rec}(P(\lambda_1 x)/(x-1))$ e, portanto por hipótese de indução, $z_n = \tilde{Q}_1(x) + \tilde{Q}_2(x)(\lambda_2/\lambda_1)^n + \cdots + \tilde{Q}_r(x)(\lambda_r/\lambda_1)^n$, onde $\operatorname{grau}(\tilde{Q}_i) < \alpha_i$ para $2 \leq i \leq r$ e $\operatorname{grau}(\tilde{Q}_1) < \alpha_1 - 1$.

Para terminar a prova, vamos mostrar que se existem polinômios P_1, P_2, \ldots, P_k tais que $y_{n+1} - y_n = P_1(n) + P_2(n)\beta_2^n + \cdots + P_k(n)\beta_k^n$ (onde $1, \beta_2, \ldots, \beta_k$ são complexos distintos e $P_i \neq 0, \forall i \geq 2$) então $y_n = \tilde{P}_1(n) + \tilde{P}_2(n)\beta_2^n + \cdots + \tilde{P}_k(n)\beta_k^n$, onde $\tilde{P}_1, \ldots, \tilde{P}_k$ são polinômios com grau $P_i = \text{grau } \tilde{P}_i$ para $i \geq 2$ e grau $\tilde{P}_1 = \text{grau } P_1 + 1$, por indução na soma dos graus dos polinômios P_i , onde convencionamos que o grau do polinômio nulo é -1.

(no nosso caso temos $\beta_i = \lambda_i/\lambda_1$, e como $x_n = \lambda_1^n y_n$ o resultado segue imediatamente).

Para provar essa afirmação observamos inicialmente que, se a soma dos grau de P_i é -1, então $y_{n+1}-y_n=0, \, \forall \, n$, e logo, y_n é constante. Em geral, consideramos 2 casos:

- a) $P_1(x) = c_m x^m + c_{m-1} x^{m-1} + \dots + c_0, c_m \neq 0$. Nesse caso definimos $\tilde{y}_n = y_n \frac{c_m n^{m+1}}{m+1}$, e temos $\tilde{y}_{n+1} \tilde{y}_n = Q_1(n) + P_2(n)\beta_1^n + \dots + P_k(n)\beta_k^n$, com grau(Q) < m. Por hipótese de indução, \tilde{y}_n (e logo y_n) é da forma desejada.
- b) $P_2(x) = d_s x^s + d_{s-1} x^{s-1} + \dots + d_0, d_s \neq 0$. Nesse caso, definimos $\tilde{y}_n = y_n \frac{d_s n^s \lambda_2^n}{\lambda_2 1}$, e temos $\tilde{y}_{n+1} \tilde{y}_n = P_1(n) + Q(n)\beta_2^n + P_3(n)\beta_3^n + \dots + P_k(n)\beta_k^n$, com grau(Q) < s. Por hipótese de indução, \tilde{y}_n (e logo y_n) é da forma desejada.

Vimos na primeira parte da demonstração acima que (x_n) satisfaz $\operatorname{Rec}(P(x))$, onde $P(x) = (x - \lambda_1)^{\alpha_1}(x - \lambda_2)^{\alpha_2} \dots (x - \lambda_r)^{\alpha_r}$ sempre que $x_n = Q_1(n)\lambda_1^n + Q_2(n)\lambda_2^n + \dots + Q_r(n)\lambda_r^n$, onde Q_1, Q_2, \dots, Q_r são polinômios com $\operatorname{grau}(Q_j) < \alpha_j, \ \forall \ j \leq r$. Vamos apresentar um argumento alternativo, motivado por conversas do autor com Bruno Fernandes Cerqueira Leite, para mostrar que todas as seqüências que satisfazem as recorrência são dessa forma.

Cada polinômio $Q_i(n)$ tem α_i coeficientes (dos monômios cujos graus são $0,1,2,\ldots,\alpha_i-1$). Como o espaço vetorial das seqüências que satisfazem $\operatorname{Rec}(P(x))$ tem dimensão $\operatorname{grau}(P(x)) = \sum_{i=1}^r \alpha_i$, basta ver que há unicidade na representação de uma seqüência na forma cima. Para isso, devemos mostrar que, se $\lambda_1,\lambda_2,\ldots,\lambda_r$ são números complexos distintos e Q_1,Q_2,\ldots,Q_r são polinômios tais que $Q_1(n)\lambda_1^n+Q_2(n)\lambda_2^n+\cdots+Q_r(n)\lambda_r^n=0, \ \forall \ n\in\mathbb{N},$ então $Q_j\equiv 0,\ \forall \ j\leq r.$

Vamos supor por absurdo que não seja assim. Supomos sem perda de generalidade que, para certos s e t com $1 \le s \le t \le r$, $|\lambda_1| = |\lambda_i| > |\lambda_j|$, $\forall i \le t, j > t$, e grau $(Q_1) = \operatorname{grau}(Q_i) > \operatorname{grau}(Q_j)$, se $i \le s < j \le t$. Se os polinômios Q_j não são todos nulos, temos Q_1 não nulo. Seja d o grau de Q_1 . Se $|\lambda_j| < |\lambda_1|$ então $\lim_{n \to \infty} \frac{Q_j(n)\lambda_j^n}{n^d\lambda_1^n} = 0$, e se $|\lambda_i| = |\lambda_1|$ e grau(Q) < d, também temos $\lim_{n \to \infty} \frac{Q(n)\lambda_i^n}{n^d\lambda_1^n} = 0$. Portanto, se $Q_1(n)\lambda_1^n + Q_2(n)\lambda_2^n + \cdots + Q_r(n)\lambda_r^n = 0$, $\forall n \in \mathbb{N}$ e o coeficiente de n^d em Q_i é a_i para $i \le s$, dividindo por $n^d\lambda_1^n$ e tomando o limite, temos

$$\lim_{n \to \infty} \left(a_1 + \sum_{2 \le i \le s} a_i \left(\frac{\lambda_i}{\lambda_1} \right)^n \right) = 0,$$

donde

$$0 = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{k=1}^{n} \left(a_1 + \sum_{2 \le i \le s} a_i \left(\frac{\lambda_i}{\lambda_1} \right)^k \right) \right)$$

$$= \lim_{n \to \infty} \left(a_1 + \frac{1}{n} \sum_{k=1}^{n} \sum_{2 \le i \le s} a_i \left(\frac{\lambda_i}{\lambda_1} \right)^k \right)$$

$$= a_1 + \sum_{2 \le i \le s} a_i \cdot \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} \left(\frac{\lambda_i}{\lambda_1} \right)^k$$

$$= a_1 + \sum_{2 \le i \le s} a_i \cdot \lim_{n \to \infty} \left(\frac{1}{n} \cdot \frac{(\lambda_i/\lambda_1)^{n+1} - (\lambda_i/\lambda_1)}{(\lambda_i/\lambda_1) - 1} \right) = a_1,$$

pois, para $2 \leq i \leq s,\, \lambda_i/\lambda_1 \neq 1$ é um complexo de módulo 1, donde

$$\left| \frac{(\lambda_i/\lambda_1)^{n+1} - (\lambda_i/\lambda_1)}{(\lambda_i/\lambda_1) - 1} \right| \le \frac{2}{|(\lambda_i/\lambda_1) - 1|},$$

e logo

$$\lim_{n\to\infty}\frac{1}{n}\left(\frac{(\lambda_i/\lambda_1)^{n+1}-(\lambda_i/\lambda_1)}{(\lambda_i/\lambda_1)-1}\right)=0.$$

Entretanto, isso é um absurdo, pois grau $(Q_1) = d$, e logo $a_1 \neq 0$.

Exemplo: $x_n = \text{sen}(n\alpha)$ satisfaz uma recorrência linear. De fato,

$$x_{n+1} = \operatorname{sen}(n\alpha + \alpha) = \operatorname{sen}(n\alpha)\cos\alpha + \cos(n\alpha)\sin\alpha \Rightarrow$$

$$x_{n+2} = \operatorname{sen}(n\alpha + 2\alpha) = \operatorname{sen}(n\alpha)\cos 2\alpha + \cos(n\alpha)\sin 2\alpha \Rightarrow$$

$$\Rightarrow x_{n+2} - \frac{\sin 2\alpha}{\sin \alpha} x_{n+1} = (\cos 2\alpha - \frac{\sin 2\alpha}{\sin \alpha} \cos \alpha) x_n$$
, ou seja,

 $x_{n+2}=2\cos\alpha\cdot x_{n+1}-x_n$. Note que x_n não parece ser da forma geral descrita nesta seção, mas de fato

$$x_n = \frac{e^{in\alpha} - e^{-in\alpha}}{2i} = \frac{1}{2i} (e^{i\alpha})^n - \frac{1}{2i} (e^{-i\alpha})^n = \frac{1}{2i} (\cos \alpha + i \sin \alpha)^n - \frac{1}{2i} (\cos \alpha - i \sin \alpha)^n$$

(observe que $\cos \alpha + i \sin \alpha$ e $\cos \alpha - i \sin \alpha$ são as raízes de $x^2 - 2 \cos \alpha \cdot x + 1$).

Observação: Se (x_n) safisfaz $\operatorname{Rec}((x-1)P(x))$, onde $P(x) = a_n x^k + a_{k-1} x^{k-1} + \cdots + a_0$, então, se definirmos $y_n = a_k x_{n+k} + a_{k-1} x_{n+k-1} + \cdots + a_0 x_n$, teremos $y_{n+1} = y_n$, $\forall n \in \mathbb{N}$, ou seja, y_n é constante. Assim, $a_k x_{n+k} + \cdots + a_0 x_n$ é um invariante da seqüência x_n , o que é um fato útil para muitos problemas envolvendo recorrência (veja, por exemplo, os Problemas 2 e 3 abaixo).

Vamos agora ver um problema resolvido em que se usam estimativas assintóticas de seqüências recorrentes para provar um resultado de teoria dos números:

Problema 1. (Problema 69 da Revista Eureka! n^o . 14) Sejam $a \in b$ inteiros positivos tais que $a^n - 1$ divide $b^n - 1$ para todo inteiro positivo n.

Prove que existe $k \in \mathbb{N}$ tal que $b = a^k$.

Solução de Zoroastro Azambuja Neto (Rio de Janeiro-RJ):

Suponha por absurdo que b não seja uma potência de a.

Então existe $k \in \mathbb{N}$ tal que $a^k < b < a^{k+1}$. Consideremos a seqüência $x_n = \frac{b^n-1}{a^n-1} \in \mathbb{N}$, $\forall n \geq 1$. Como $\frac{1}{a^n-1} = \frac{1}{a^n} + \frac{1}{a^{2n}} + \cdots = \sum_{j=1}^{\infty} \frac{1}{a^{jn}}$, temos

$$x_n = \sum_{j=1}^{\infty} \frac{b^n}{a^{jn}} - \frac{1}{a^n - 1} = \left(\frac{b}{a}\right)^n + \left(\frac{b}{a^2}\right)^n + \dots + \left(\frac{b}{a^k}\right)^n + \frac{b^n}{a^{kn}(a^n - 1)} - \frac{1}{a^n - 1}.$$

Note que como $\frac{b^n}{a^{kn}(a^n-1)} = \frac{(b/a^{k+1})^n}{1-a^{-n}}$ e $\frac{1}{a^n-1}$ tendem a 0 quando n cresce, se definimos

$$y_n = \left(\frac{b}{a}\right)^n + \left(\frac{b}{a^2}\right) + \dots + \left(\frac{b}{a^k}\right)^n = \sum_{j=1}^k \left(\frac{b}{a^j}\right)^n,$$

temos que

$$x_n - y_n = \frac{b^n}{a^{kn}(a^n - 1)} - \frac{1}{a^n - 1}$$

tende a 0 quando n tende a infinito. Por outro lado, como y_n é uma soma de k progressões geométricas de razões b/a^j , $1 \le j \le k$, y_n satisfaz a equação de recorrência $c_0y_{n+k} + c_1y_{n+k-1} + \cdots + c_ky_n = 0$, $\forall n \ge 0$, onde

$$c_0 x^k + c_1 x^{k-1} + \dots + c_{k-1} x + c_k = a^{k(k+1)/2} \left(x - \frac{b}{a} \right) \left(x - \frac{b}{a^2} \right) \dots \left(x - \frac{b}{a^k} \right)$$

Note que todos os c_i são inteiros. Note também que

$$c_0x_{n+k} + c_1x_{n+k-1} + \dots + c_kx_n = c_0(x_{n+k} - y_{n+k}) + c_1(x_{n+k-1} - y_{n+k-1}) + \dots + c_k(x_n - y_n)$$

tende a 0 quando n tende a infinito, pois $x_{n+j} - y_{n+j}$ tende a 0 para todo j com $0 \le j \le k$ (e k está fixo). Como os c_i e os x_n são todos inteiros, isso mostra que $c_0x_{n+k} + c_1x_{n+k-1} + \cdots + c_kx_n = 0$ para todo n grande.

Agora, como

$$x_n = y_n + \left(\frac{b}{a^{k+1}}\right)^n + \frac{b^n}{a^{(k+1)n}(a^n - 1)} - \frac{1}{a^n - 1},$$

temos

$$c_0 x_{n+k} + c_1 x_{n+k-1} + \dots + c_k x_n = \sum_{j=0}^k c_j \left(\left(\frac{b}{a^{k+1}} \right)^{n+k-j} + z_{n+k-j} \right),$$

onde

$$z_m = \frac{b^m}{a^{(k+1)m}(a^m - 1)} - \frac{1}{a^m - 1}.$$

Note que

$$\sum_{j=0}^{k} c_k \left(\frac{b}{a^{k+1}}\right)^{n+k-j} = P\left(\frac{b}{a^{k+1}}\right) \cdot \left(\frac{b}{a^{k+1}}\right)^n,$$

onde

$$P(x) = c_0 x^k + c_1 x^{k-1} + \dots + c_{k-1} x + c_k = a^{k(k+1)/2} \left(x - \frac{b}{a} \right) \left(x - \frac{b}{a^2} \right) \dots \left(x - \frac{b}{a^k} \right),$$

donde $P\left(\frac{b}{a^{k+1}}\right) \neq 0$. Por outro lado, para todo j com $0 \leq j \leq k$, $z_{n+k-j} / \left(\frac{b}{a^{k+1}}\right)^n = \frac{(b/a^{k+1})^{k-j}}{a^{n+k-j}-1} - \frac{1}{(a^{k-j}-a^{-n})(b/a^k)^n}$, que tende a 0 quando n tende a infinito, donde $w_n = \left(\sum_{j=0}^k c_j x_{n+k-j}\right) / \left(\frac{b}{a^{k+1}}\right)^n$ tende a $P\left(\frac{b}{a^{k+1}}\right) \neq 0$, o que é um absurdo, pois, como vimos antes, w_n é igual a 0 para todo n grande.

Veremos a seguir dois problemas resolvidos que envolvem seqüências recorrentes, que foram propostos na OBM e na IMO, respectivamente:

Problema 2. (Problema 5 da 13^a Olimpíada Brasileira de Matemática - Nível Sênior - 1991) Seja Q_0 o quadrado de vértices $P_0 = (1,0)$, $P_1 = (1,1)$, $P_2 = (0,1)$ e $P_3 = (0,0)$. Seja A_0 o interior desse quadrado. Para cada $n \in \mathbb{N}$, P_{n+4} é o ponto médio do segento $\overline{P_n P_{n+1}}$, Q_n é o quadrilátero de vértices P_n, P_{n+1}, P_{n+2} e P_{n+3} e A_n é o interior de Q_n . Encontre a interseção de todos os A_n .

Solução 1:

e

Temos $P_{n+4} = \frac{P_n + P_{n+1}}{2}$. Portanto, $P_{n+1} + 2P_{n+2} + 2P_{n+3} + 2P_{n+4} = P_n + 2P_{n+1} + 2P_{n+2} + 2P_{n+3}$, logo $P_n + 2P_{n+1} + 2P_{n+2} + 2P_{n+3} = P_0 + 2P_1 + 2P_2 + 2P_3 = (3,4)$, para todo $n \in \mathbb{N}$ (note que $2x^4 - x - 1 = (x - 1)(2x^3 + 2x^2 + 2x + 1)$), donde, como A_n é sempre convexo,

$$\left(\frac{3}{7}, \frac{4}{7}\right) = \frac{P_n + 2P_{n+1} + 2P_{n+2} + 2P_{n+3}}{7} =$$

$$= \frac{3}{7} \left(\frac{1}{3}P_n + \frac{2}{3}P_{n+1}\right) + \frac{4}{7} \left(\frac{P_{n+2} + P_{n+3}}{2}\right)$$

sempre pertence ao interior de A_n . Se mostrarmos que o diâmetro (maior distância entre 2 pontos) de A_n tende a 0, teremos mostrado que a interseção de todos os A_n é $\left\{\left(\frac{3}{7}, \frac{4}{7}\right)\right\}$.

Para isso, note que o diâmetro de ABCD é diam $(ABCD) = \max \{\overline{AB}, \overline{AC}, \overline{AD}, \overline{BC}, \overline{BD}, \overline{CD}\},$

$$P_{n+4} = \frac{P_n + P_{n+1}}{2} , \quad P_{n+5} = \frac{P_{n+1} + P_{n+2}}{2} , \quad P_{n+6} = \frac{P_{n+2} + P_{n+3}}{2}$$

$$P_{n+7} = \frac{P_{n+3} + P_{n+4}}{2} = \frac{2P_{n+3} + P_{n} + P_{n+1}}{4}$$

e

$$P_{n+8} = \frac{P_{n+4} + P_{n+5}}{2} = \frac{P_n + 2P_{n+1} + P_{n+2}}{4}.$$

Assim,

$$\overline{P_{n+5}P_{n+6}} = |P_{n+6} - P_{n+5}| = \left| \frac{P_{n+3} - P_{n+1}}{2} \right| = \frac{1}{2} \overline{P_{n+1}P_{n+3}},$$

$$\overline{P_{n+5}P_{n+7}} = |P_{n+7} - P_{n+5}| = \frac{2P_{n+3} + P_n - P_{n+1} - 2P_{n+2}}{4} \le \frac{1}{2} |P_{n+3} - P_{n+2}| + \frac{1}{4} |P_n - P_{n+1}| = \frac{\overline{P_{n+2}P_{n+3}}}{4} + \frac{\overline{P_nP_{n+1}}}{2},$$

$$\overline{P_{n+5}P_{n+8}} = |P_{n+8} - P_{n+5}| = \left| \frac{P_n - P_{n+2}}{4} \right| = \frac{\overline{P_nP_{n+2}}}{4},$$

$$\overline{P_{n+6}P_{n+7}} = |P_{n+7} - P_{n+6}| = \left| \frac{P_n + P_{n+1} - 2P_{n+2}}{4} \right| \le \frac{\overline{P_nP_{n+2}}}{4}$$

$$\leq \frac{|P_n - P_{n+2}|}{4} + \frac{|P_{n+1} - P_{n+2}|}{4} = \frac{1}{4} \frac{|P_n - P_{n+2}|}{4} + \frac{1}{4} \frac{|P_{n+1} - P_{n+2}|}{|P_{n+6} - P_{n+8}|} = |P_{n+8} - P_{n+6}| = \left| \frac{|P_n + 2P_{n+1} - P_{n+2} - 2P_{n+3}|}{4} \right| \leq \frac{1}{4} \frac{|P_n - P_{n+8}|}{|P_n - P_{n+6}|} = \frac{1}{4} \frac{|P_n - P_{n+1}|}{|P_n - P_{n+1}|} = \frac{1}{4} \frac{|P_n - P_n|}{|P_n - P_n|} = \frac{1}{4}$$

$$\leq \frac{1}{2} \left| P_{n+1} - P_{n+3} \right| + \frac{1}{4} \left| P_n - P_{n+2} \right| = \frac{1}{2} \overline{P_{n+1} P_{n+3}} + \frac{1}{4} \overline{P_n P_{n+2}},$$

e

$$\overline{P_{n+7}P_{n+8}} = |P_{n+8} - P_{n+7}| = \left| \frac{P_{n+2} + P_{n+1} - 2P_{n+3}}{4} \right| \le
\le \frac{|P_{n+2} - P_{n+3}|}{4} + \frac{|P_{n+1} - P_{n+3}|}{4} = \frac{1}{4} \overline{P_{n+2}P_{n+3}} + \frac{1}{4} \overline{P_{n+1}P_{n+3}}$$

Portanto, diam $(P_{n+5}P_{n+6}P_{n+7}P_{n+8}) \leq \frac{3}{4} \operatorname{diam}(P_nP_{n+1}P_{n+2}P_{n+3})$, donde

$$\operatorname{diam}(P_{5k}P_{5k+1}P_{5k+2}P_{5k+3}) \le \left(\frac{3}{4}\right)^k \operatorname{diam}(P_0P_1P_2P_3) = \sqrt{2} \cdot \left(\frac{3}{4}\right)^k,$$

que tende a 0, o que implica o nosso resultado.

Solução 2:

Podemos escrever $P_n=Q_0+Q_1\alpha^n+Q_2\beta^n+Q_3\gamma^n$, onde 1, α , β e γ são as raízes de $x^4-\left(\frac{x+1}{2}\right)=0$, ou seja, α , β e γ são raízes de $2x^3+2x^2+2x+1=0$ (pois

Para calcular Q_0 , observe que:

$$\begin{cases} Q_0 + Q_1 + Q_2 + Q_3 = P_0 \\ Q_0 + Q_1 \alpha + Q_2 \beta + Q_3 \gamma = P_1 \\ Q_0 + Q_1 \alpha^2 + Q_2 \beta^2 + Q_3 \gamma^2 = P_2 \\ Q_1 + Q_1 \alpha^3 + Q_2 \beta^3 + Q_3 \gamma^3 = P_3 \end{cases}$$

$$\Rightarrow 7Q_0 + Q_1(1 + 2\alpha + 2\alpha^2 + 2\alpha^3) + Q_2(1 + 2\beta + 2\beta^2 + 2\beta^3) + Q_3(1 + 2\gamma + 2\gamma^2 + 2\gamma^3)$$

$$= P_0 + 2P_1 + 2P_2 + 2P_3 \Rightarrow 7Q_0 = P_0 + 2P_1 + 2P_2 + 2P_3 \text{ (pois } \alpha, \ \beta \text{ e } \gamma \text{ são raízes de } 2x^3 + 2x^2 + 2x + 1) \Rightarrow Q_0 = \frac{P_0 + 2P_1 + 2P_2 + 2P_3}{7} = \left(\frac{3}{7}, \frac{4}{7}\right).$$

Problema 3. (Problema 3 da 41^a Olimpíada Internacional de Matemática, realizada em 2000, na Coréia do Sul) Seja $n \geq 2$ um inteiro. Existem n pulgas numa reta horizontal, nem todas no mesmo ponto. Para um dado número real positivo λ , define-se um salto da seguinte maneira:

- Escolhem-se duas pulgas quaisquer nos pontos A e B, com o ponto A à esquerda do ponto B;
- A pulga que está em A salta até o ponto C da reta, à direita de B, tal que $\frac{BC}{AB} = \lambda$.

Determine todos os valores de λ para os quais, dado qualquer ponto M na reta e quaisquer posições iniciais das n pulgas, existe uma sucessão finita de saltos que levam todas as pulgas para pontos à direita de M.

Solução:

A resposta é: para $\ell \ge \frac{1}{(n-1)}$.

Devemos demonstrar duas coisas:

- a) que, para $\ell \geq \frac{1}{(n-1)}$, existe uma seqüência infinita de movimentos que vai levando as pulgas cada vez mais para a direita, ultrapassando qualquer ponto prefixado M;
- b) que, para $\ell < \frac{1}{(n-1)}$ e para qualquer posição inicial das pulgas, existe um ponto M tal que as pulgas em um número finito de movimentos jamais alcançam ou ultrapassam M.

Começaremos pelo item b). Sejam x_1, x_2, \ldots, x_n as posições iniciais das pulgas, com $x_1 \le x_2 \le \cdots \le x_n$, de tal forma que x_n é a posição da pulga mais à direita. Seja

$$P = \left(\frac{1}{1 - (n-1)\ell}\right) \cdot (x_n - \ell \cdot x_1 - \ell \cdot x_2 - \dots - \ell \cdot x_{n-1}).$$

O ponto P claramente está à direita de todas as pulgas.

Afirmamos que, se após alguns movimentos as novas posições são x_1', \ldots, x_n' e definimos

$$P' = \left(\frac{1}{1 - (n-1)\ell}\right) \cdot (x'_n - \ell \cdot x'_1 - \ell \cdot x'_1 - \dots - \ell \cdot x'_{n-1}),$$

então $P' \leq P$, o que conclui a demonstração, pois isso mostra que as pulgas nunca passarão do ponto P.

Para provar esta afirmação, basta considerar o que ocorre após um movimento.

Se a pulga que estava em x_i pula sobre a pulga que estava em x_n então $x_n' - x_n = \ell \cdot (x_n - x_i)$ e $x_n' - \ell \cdot x_n = x_n - \ell \cdot x_i$ e P' = P.

Vamos ver que qualquer outro caso é ainda mais favorável. Suponhamos que a pulga que estava em x_i pula sobre a pulga que estava em x_j . Se a pulga que pulou continua atrás de x_n , temos $x'_n = x_n$ e $x'_1 + \cdots + x'_{n-1} > x_1 + \cdots + x_{n-1}$, donde P' < P. Se ela passa de x_n , teremos $x'_n = x_j + \ell(x_j - x_i) \Rightarrow x'_n - \ell x_n < x'_n - \ell x_j = x_j - \ell x_i < x_n - \ell x_i$, donde novamente temos P' < P.

Vamos agora ao item a): Seja $P=x_n-\ell(x_1+x_2+\cdots+x_{n-1})$ se, em cada movimento, a pulga mais à esquerda pula sobre a pulga mais à direita, temos $x_n'=x_n+\ell(x_n-x_1)\Rightarrow x_n'-\ell x_n=x_n-\ell x_1$. Assim, se as novas posições são $x_1'=x_2,\ldots,x_{n-1}'=x_n$ e x_n' , e $P'=x_n'-\ell(x_1'+x_2'+\cdots+x_{n-1}')$, temos P'=P, donde P é uma constante. Podemos supor sem perda de generalidade que P é positivo (escolhendo a origem, por exemplo, em $\frac{x_1+\cdots+x_{n-1}}{n-1}$; note que então teremos sempre $\frac{x_1+\cdots+x_{n-1}}{n-1}\geq 0$). Temos então

$$\frac{1}{n-1} \sum_{j=1}^{n-1} (x_n - x_j) = x_n - \frac{1}{n-1} (x_1 + \dots + x_{n-1}) \ge x_n - \ell(x_1 + \dots + x_{n-1}) = P \Rightarrow$$

$$x_n - x_1 \ge \frac{1}{n-1} \sum_{j=1}^{n-1} (x_n - x_j) \ge P \Rightarrow x'_n - x_n = \ell(x_n - x_1) \ge \frac{P}{n-1},$$

donde o ponto mais à direita caminha pelo menos $\frac{P}{n-1}$ para a direita a cada passo, logo tende a infinito. Como o ponto mais a direita após n-1 passos será o ponto mais à esquerda, todos os pontos tendem a infinito (para a direita).

Nota: Na estratégia descrita na solução do item a), o ponto mais à esquerda se torna sempre o mais à direita, donde podemos definir $x_{n+1} = x'_n = x_n + \ell(x_n - x_1)$, e teriamos simplesmente $x'_j = x_{j+1}$, $\forall j$. Reduzimos então a análise dessa estratégia ao estudo da recorrência linear $x_{n+1} = (1 + \ell)x_n - \ell x_1$, cujo polinômio característico é $P(x) = x^{n+1} - (1 + \ell)x^n + \ell$, do qual 1 é raiz, donde, como $\frac{P(x)}{x-1} = x^n - \ell(x^{n-1} + x^{n-2} + \cdots + x + 1)$, a expressão $y_m = x_m - \ell(x_{m-1} + x_{m-2} + \cdots + x_{m-n+1} + x_{m-n})$ é um invariante da recorrência, isto é, $y_{m+1} = y_m + \ell$, donde y_m é constante. Daí vem nossa fórmula para p.

Concluímos com o problema a seguir, que é uma interessante aplicação de seqüências recorrentes à trigonometria.

Problema 4. Prove que os ângulos agudos de um triângulo retângulo de lados 3, 4 e 5 são irracionais quando expressos em graus (i.e., são múltiplos irracionais de π).

Solução:

Considere a seqüência $x_n = \frac{(2+i)^n - (2-i)^n}{2i}$. Temos $x_0 = 0$, $x_1 = 1$ e, como 2+i e 2-i são raízes da equação $x^2 - 4x + 5 = 0$, (x_n) satisfaz a recorrência $x_{n+2} = 4x_{n+1} - 5x_n$. Daí segue que x_{n+2} é congruente a $-x_{n+1}$ módulo 5 para todo $n \ge 1$, donde x_n é congruente a $(-1)^{n+1}$ para todo $n \ge 1$, e logo x_n não é múltiplo de 5 para nenhum $n \ge 1$. Em particular, $x_n \ne 0$, para todo $n \ge 1$. Assim, $1 \ne \frac{(2+i)^n}{(2-i)^n} = (\frac{2+i}{2-i})^n = (\frac{3}{5} + \frac{4}{5}i)^n$, para todo $n \ge 1$. Se $\theta = \cos^{-1}(3/5)$, $\frac{3}{5} + \frac{4}{5}i = e^{i\theta}$, donde $(\frac{3}{5} + \frac{4}{5}i)^n = e^{in\theta} \ne 1$, para todo $n \ge 1$, o que implica que θ/π é irracional (de fato, se $\theta/\pi = p/q$, teríamos $e^{2iq\theta} = e^{2ip\pi} = 1$).

Nota: Para uma versão mais geral deste problema, veja o Problema 88 proposto na Eureka! 17, p. 60 por Carlos Gustavo Moreira e José Paulo Carneiro, e a solução de seus autores publicada na Eureka! 20, pp. 52-53.