

"Moving Pictures"
Prof.Luciano Monteiro de Castro
lucianogmcastro@gmail.com

Problemas

1. If a figure F is moved in the plane in such a manner that two given non-parallel lines p and q of F always pass through two given points A and B in the plane, then every other line of F either always passes through some given point in the plane, or is always tangent to some circle in the plane.
2. Now suppose that the figure F moves in the plane in such a manner that two non-parallel lines m and n of the figure are always tangent to two given circles S_{1} and S_{2}, then every line of the figure F is either always tangent to some fixed circle, or always passes through some given point.
3. If a figure F moves in the plane in such a manner that two of its points A and B trace out lines p and q that intersect in a point O , then there exists a circle S attached to the figure F , all points of which trace out lines passing through O .
4. Construct a triangle congruent to a given triangle and whose sides
(a) pass through three given points;
(b) are tangent to three given circles.
5. (a) The hypotenuse of a right triangle slides with its endpoints on two perpendicular lines. Find the locus described by the vertex at the right angle.
(b) The longest side of an isosceles triangle with vertex angle of 120° slides with its endpoints on the sides of an angle of 60°. Find the locus described by the vertex at the largest angle.
6. In the plane are given two perpendicular lines l_{1} and l_{2} and a circle S. Construct a right triangle $A B C$ with a given acute angle α, whose vertices A and B lie on l_{1} and l_{2}, and whose vertex C at the right angle lies on S.
7. Let A be one of the points of intersection of two circles S_{1} and S_{2}. Through A we pass an arbitrary line l and a fixed line l_{0}, intersecting S_{1} and S_{2} for the second time in points M_{1}, M_{2} and N_{1}, N_{2}; let $M_{1} M_{2} P$ be an equilateral triangle constructed on the segment $M_{1} M_{2}$ and let Q be the point of intersection of the lines $M_{1} N_{1}$ and $M_{2} N_{2}$. Prove that when the line l is rotated around A,
(a) the vertex P of the triangle $M_{1} M_{2} P$ describes a circle Σ, and the sides $M_{1} P$ and $M_{2} P$ turn around certain fixed points I_{1} and $I_{2}\left(M_{1} P\right.$ passes through I_{1} and $M_{2} P$ through $\left.I_{2}\right)$;
(b) Q describes a circle Γ. Find the locus described by the centers of the circles Γ corresponding to different positions for the given line l_{0}.
8. Let l be an arbitrary line passing through the vertex A of a triangle $A B C$ and meeting its base $B C$ in a point M; let O_{1} and O_{2} be the centers of the circles circumscribed about triangles $A B M$ and $A C M$. Find the locus described by the centers of the segments $\mathrm{O}_{1} \mathrm{O}_{2}$ corresponding to all possible positions of the line l.
9. A triangle $A B C$ and a point O are given. Through O are passed three lines l_{1}, l_{2} and l_{3}, such that the angles between them are equal to the angles of the triangle (the direction of the angles is taken into account); let \bar{A}, \bar{B} and \bar{C} be the points of intersection of these lines with the corresponding sides of $\triangle A B C$.
(a) Prove that if O is
1) the center of the circumscribed circle;
2) the center of the inscribed circle;
3) the point of intersection of the altitudes (the orthocenter) of triangle $A B C$, then O is also
4) the orthocenter;
5) the center of the circumscribed circle;
6) the center of the inscribed circle of triangle $\bar{A} \bar{B} \bar{C}$.
(b) Let the point O be arbitrary and let the lines l_{1}, l_{2} and l_{3} rotate around O. Find the locus of
1° the centers of the circumscribed circles;
2° the centers of the inscribed circles;
3° the orthocenters of the triangles $\bar{A} \bar{B} \bar{C}$.
10. If the figure F moves in such a way that all positions are similar to the original position and such that some three points A, B and C of the figure describe three lines not passing through a common point, then every point of the figure describes a straight line.
11. If the figure F moves in such a way that all positions are similar to the original position and so that three lines l, m and n of F, not passing through a common point, pass at all times through three given points, then every line of F passes at all times through some constant point, and every point of F describes a circle.
12. Construct a quadrilateral $A B C D$, similar to a given one (for example, a square),
(a) whose vertices lie on four given lines;
(b) whose sides pass through four given points;
(c) whose sides $B C, C D$ and diagonal $B D$ pass through three given points, and whose vertex A lies on a given circle.
13. Let four lines l_{1}, l_{2}, l_{3}, and l_{4} be given. Construct a line l with the property that the three intervals cut off on it by the four given lines form given ratios.
14. Rotate each side of triangle $A B C$ about the midpoint of that side through a fixed angle α (in the same direction each time); let $A^{\prime} B^{\prime} C^{\prime}$ be the new triangle formed by the rotated lines. Find the locus of points of intersection of the altitudes, of the angle bisectors, and of the medians of triangle $A^{\prime} B^{\prime} C^{\prime}$ corresponding to different values of the angle α. Prove that the centers of the circumscribed circles of all these triangles coincide.
15. Let M, K and L be three points lying on sides $A B, B C$ and $A C$ of triangle $A B C$. Prove that
(a) the circles S_{1}, S_{2} and S_{3} circumscribed about triangles LMA, MKB, and KLC meet in a point;
(b) the triangle formed by the centers of circles S_{1}, S_{2} and S_{3} is similar to triangle $A B C$.
16. In a circle S let there be inscribed two directly congruent triangles $A B C$ and $A_{1} B_{1} C_{1}$; let \bar{A}, \bar{B}, and \bar{C} be the points of intersection of their corresponding sides. Prove that (a) triangle $\bar{A} \bar{B} \bar{C}$ is similar to triangles $A B C$ and $A_{1} B_{1} C_{1} ;(b)$ the point of intersection of the altitudes of triangle $\bar{A} \bar{B} \bar{C}$ coincides with the center of the circle S.
17. Four lines are given in the plane, no three of which pass through a common point and no two of which are parallel. Prove that the points of intersection of the altitudes of the four triangles formed by these lines lie on a line.
18. Find the locus of points M such that the lengths of the tangents from M to two intersecting circles S_{1} and S_{2} has a given ratio.

Consider three similar figures $\mathrm{F}_{1}, \mathrm{~F}_{2}, \mathrm{~F}_{3}$. Let $\mathrm{O}_{3}, \mathrm{O}_{2}$ and O_{1} denote the centers of rotation of each successive pair of these figures. The triangle $\mathrm{O}_{1} \mathrm{O}_{2} \mathrm{O}_{3}$ is called the triangle of similarity, and the circle circumscribed about this triangle is called the circle of similarity of the figures $\mathrm{F}_{1}, \mathrm{~F}_{2}$ and F_{3}. In case the points $\mathrm{O}_{1}, \mathrm{O}_{2}$ and O_{3} all lie on a line, or coincide, the circle of similarity degenerates to a line - the similarity axis or to a point, the similarity center, of the figures. If F_{1}, F_{2} and F_{3} are pairwise centrally similar then the circle of similarity degenerates to either a line or a point. In the next two problems we assume that the circle of similarity of the three figures F_{1}, F_{2} and F_{3} does not degenerate to a line or a point.
19. Three similar figures F_{1}, F_{2} and F_{3} are given in the plane. Let $A_{1} B_{1}, A_{2} B_{2}$ and $A_{3} B_{3}$ be three corresponding line segments in these figures; let $D_{1} D_{2} D_{3}$ be the triangle whose sides are the lines $A_{1} B_{1}, A_{2} B_{2}$ and $A_{3} B_{3}$. Prove that
(a) the lines $\mathrm{D}_{1} \mathrm{O}_{1}, \mathrm{D}_{2} \mathrm{O}_{2}$ and $\mathrm{D}_{3} \mathrm{O}_{3}$ meet in a point U that lies on the circle of similarity of the figures F_{1}, F_{2} and F_{3};
(b) the circles circumscribed about triangles $A_{1} A_{2} D_{3}, A_{1} A_{3} D_{2}$ and $A_{2} A_{3} D_{1}$ meet in a point V that lies on the circle of similarity of the figures F_{1}, F_{2} and F_{3};
(c) let $D_{1}^{\prime} D_{2}^{\prime} D_{3}^{\prime}$ be some triangle different from $D_{1} D_{2} D_{3}$, whose sides are three corresponding lines in the figures F_{1}, F_{2} and F_{3}. Then the triangles $D_{1} D_{2} D_{3}$ and $D_{1}^{\prime} D_{2}^{\prime} D_{3}^{\prime}$ are directly similar and the rotation center O of these two triangles lies on the circle of similarity of F_{1}, F_{2} and F_{3}.
20. Let F_{1}, F_{2} and F_{3} be three similar figures; let l_{1}, l_{2} and l_{3} be corresponding lines in these figures, and suppose that l_{1}, l_{2}, l_{3} meet in a point W. Prove that
(a) W lies on the circle of similarity of F_{1}, F_{2} and F_{3};
(b) l_{1}, l_{2} and l_{3} pass through three constant (that is, not depending on the choice of the lines l_{1}, l_{2} and l_{3}) points J_{1}, J_{2} and J_{3} that lie on the circle of similarity of F_{1}, F_{2} and F_{3}.

Referência

"Geometric Transformations II", I. M. Yaglom, MAA Press 1968.
Disponível em http://www.ams.org/books/nml/021/nml021-endmatter.pdf

Prof. Luciano Monteiro de Castro (lucianogmcastro@gmail.com)
Academia Matematicamente (@matematicamentexyz)

