Alguns problemas bacanas

Carlos Gustavo Moreira IMPA

1) (CONEMAT-2024). Considere as sequências de inteiros positivos $(x_n)_{n\geq 1}$, $(y_n)_{n\geq 1}$ dadas por: $x_1 = 2024, x_{n+1} = x_n^{(x_n^{2024})}, \forall n \geq 1; y_1 = 2, y_{n+1} = 2^{y_n}, \forall n \geq 1.$

Determine o menor inteiro positivo k tal que $y_k > x_{2024}$

2) (P6-IMO-1991). Uma sequência infinita $x_0, x_1, x_2, ...$ de números reais é dita limitada se existe uma constante C tal que $|x_i| \leq C, \forall i \geq 0$.

Dado um número real $\alpha > 1$, construa uma sequência infinita limitada $x_0, x_1, x_2, ...$ tal que $|x_i - x_j||i - j|^{\alpha} \ge 1$ para todo par de naturais distintos i, j.

- **3)** (P6-CIIM-2014)
 - (a) Seja (x_n) uma sequência com $0 \le x_n \le 1$ para todo n. Prove que existe C > 0 tal que, para todo inteiro positivo r, existem $m \ge 1$ e n > m + r tais que $(n m)|x_n x_m|$? C.
 - (b) Prove que, para todo C > 0, existem uma sequência (x_n) com $0 \le x_n \le 1$ para todo n e um inteiro positivo r tais que se $m \ge 1$ e n > m + r então $(n m)|x_n x_m| > C$.
- 4) (P3-IMO-2017) Um coelho invisível e um caçador jogam da seguinte forma no plano euclidiano. O ponto de partida A_0 do coelho e o ponto de partida B_0 do caçador são iguais. Depois de n-1 rodadas do jogo, o coelho encontra-se no ponto A_{n-1} e o caçador encontra-se no ponto B_{n-1} . Na n-ésima rodada do jogo, ocorrem três coisas na seguinte ordem:
 - (i) O coelho move-se de forma invisível para um ponto A_n tal que a distância entre A_{n-1} e A_n é exatamente 1.
 - (ii) Um aparelho de localização informa um ponto P_n ao caçador. A única informação garantida pelo aparelho ao caçador é que a distância entre P_n e A_n é menor ou igual a 1.
 - (iii) O caçador move-se de forma visível para um ponto B_n tal que a distância entre B_{n-1} e B_n é exatamente 1.
 - É sempre possível que, qualquer que seja a maneira em que se mova o coelho e quaisquer que sejam os pontos informados pelo aparelho de localização, o caçador possa escolher os seus movimentos de modo que depois de 10^9 rodadas o caçador possa garantir que a distância entre ele e o coelho seja menor ou igual que 100?
- 5) Um leão e um homem jogam da seguinte forma em um disco D de raio R > 0 contido no plano euclidiano. O ponto de partida A_0 do leão e o ponto de partida B_0 do homem pertencem a D. Depois de n-1 rodadas do jogo, o leão encontra-se no ponto A_{n-1} e o homem encontra-se no ponto B_{n-1} . Na n-ésima rodada do jogo, ocorrem duas coisas na seguinte ordem:
 - (i) O leão move-se (de forma visível) para um ponto A_n de D tal que a distância entre A_{n-1} e A_n é no máximo 1.
 - (ii) O homem move-se (de forma visível) para um ponto B_n de D tal que a distância entre B_{n-1} e B_n é no máximo 1.
 - É sempre possível, para qualquer R > 0 e para quaisquer pontos A_0 e B_0 de D que, qualquer que seja a maneira em que se mova o homem, o leão possa escolher os seus movimentos de modo que depois de um certo número n de rodadas consiga alcançar o homem, ou seja, ter $A_n = B_{n-1}$?