Equações funcionais Equação de Cauchy e o truque da Romênia

Bernardo P. Trevizan

1 Lemas e definições

Definição 1.1. (Equação de Cauchy) f(x + y) = f(x) + f(y). Se o domínio de f for \mathbb{Q} , não é complicado resolver a equação. Vamos estudar o que acontece se o domínio for um intervalo que contém o 0 ou com uma das extremidades no 0 (o que inclui $\mathbb{R}, \mathbb{R}_{\geq 0}$ e $\mathbb{R}_{> 0}$).

Lema 1.2. Cauchy implica f(x) = cx se f satisfaz alguma das seguintes propriedades em algum intervalo: contínua, crescente, decrescente, limitada.

Lema 1.3. Se uma solução de Cauchy não é linear, então seu gráfico é denso no plano. Ou seja, para quaisquer $a,b \in \mathbb{R}$ com a no domínio e para qualquer $\epsilon > 0$, existe x tal que $|x - a| < \epsilon$ e $|f(x) - b| < \epsilon$.

Lema 1.4. As equações a seguir são equivalentes a Cauchy:

- $f: \mathbb{R}_{>0} \to \mathbb{R}$, f(xy) = f(x) + f(y)
- $f: \mathbb{R} \to \mathbb{R}_{>0}$, f(x+y) = f(x)f(y)
- $f: \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, f(xy) = f(x)f(y)

 $\textbf{Lema 1.5.} \text{ (Lema da Romênia) Se } f: \mathbb{R} \to \mathbb{R} \text{ satisfaz } f(x+1) = f(x) + 1 \text{ e } f(x^2) = f(x)^2, \text{ então } f(x) = x.$

2 Problemas

Problema 2.1 Ache todas as funções continuas $f: \mathbb{R} \to \mathbb{R}$ satisfazendo

$$f(f(x+y)) = f(x) + f(y)$$

Problema 2.2 Determine todas as funções $f : \mathbb{R} \to \mathbb{R}$ tais que

$$f(x^2 - y^2) = xf(x) - yf(y)$$

para todos os pares de reais x e y.

Problema 2.3 Ache todas $f: \mathbb{R} \to \mathbb{R}$ tais que, para todos $x, y \in \mathbb{R}$,

$$f(x) + f(y) = f(x+y) e f(x^{2013}) = f(x)^{2013}$$

Problema 2.4 Ache todas as funções $f: \mathbb{R}^* \to \mathbb{R}^*$ tais que

$$f(x^2 + y) = (f(x))^2 + \frac{f(xy)}{f(x)}$$

para todos $x, y \in \mathbb{R}^*$ com $-x^2 \neq y$.

Problema 2.5 Determine todas as funções $f: \mathbb{R} \to \mathbb{R}$ tais que, para quaisquer reais $x \in \mathcal{Y}$,

$$f(x^2y - y) = f(x)^2f(y) + f(x)^2 - 1.$$