Geometria Projetiva

Luíze D'Urso

29 de janeiro de 2025

1 Razão Cruzada

Definição 1. Sejam A, B, C e D pontos colineares. Sua razão cruzada é definida como

$$(A, B; C, D) = \frac{AC}{AD} : \frac{BC}{BD}.$$

Lema 1. Sejam A, B, C e D pontos colineares e O um ponto não colinear aos anteriores. Então a razão cruzada (A, B; C, D) é dada por

$$(A,B;C,D) = \frac{AC}{AD} : \frac{BC}{BD} = \frac{\sin(\angle AOC)}{\sin(\angle AOD)} : \frac{\sin(\angle BOC)}{\sin(\angle BOD)}.$$

Definição 2. Sejam a, b, c e d retas concorrentes. Sua razão cruzada é definida como

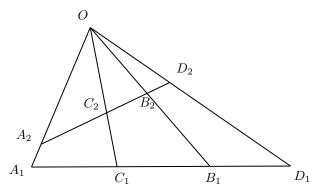
$$(a, b; c, d) = \frac{\sin(\angle ac)}{\sin(\angle ad)} : \frac{\sin(\angle bc)}{\sin(\angle bd)}.$$

Consequências do Lema:

Corolário 1. Sejam A, B, C e D pontos colineares e O um ponto não colinear aos anteriores. Se $a = \overline{OA}$, $b = \overline{OB}$, $c = \overline{OC}$, $d = \overline{OD}$, então

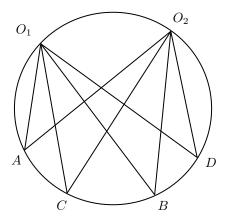
$$(A, B; C, D) = (a, b; c, d).$$

Corolário 2. Sejam A_1 , B_1 , C_1 e D_1 pontos em uma reta r e A_2 , B_2 , C_2 e D_2 outros pontos em uma outra reta s, tais que A_1A_2 , B_1B_2 , C_1C_2 e D_1D_2 concorrem em O. Então $(A_1, B_1; C_1, D_1) = (A_2, B_2; C_2, D_2)$.



Corolário 3. Sejam A, B, C, D, O₁ e O₂ pontos em um círculo. Então

$$(O_1A, O_1B; O_1C, O_1D) = (O_{\odot}A, O_2B; O_2C, O_2D).$$



Definição 3. Sejam A, B, C e D pontos em um círculo. Sua razão cruzada é definida como

$$(A, B; C, D) = \frac{\sin(\widehat{AC}/2)}{\sin(\widehat{AB}/2)} : \frac{\sin(\widehat{BC}/2)}{\sin(\widehat{BD}/2)}.$$

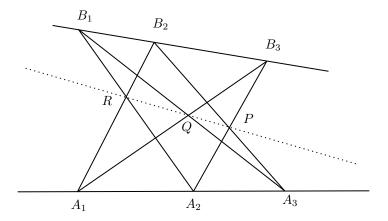
2 Teoremas

Teorema 1 (Teorema da Borboleta). Seja XY uma corda em uma circunferência e M o seu ponto médio. Sejam AB e CD outras duas cordas da mesma circunferência passando por M. Sejam P e Q as interseções de AC e BD com XY. Então M é ponto médio de PQ.

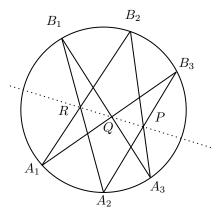
Teorema 2 (Teorema de Desargues). Sejam 6 pontos distintos A, B, C, A', B' e C' do plano projetivo tais que as retas AA', BB' e CC' são concorrentes. Então os 3 pontos de interseção $AB \cap A'B'$, $AC \cap A'C'$ e $BC \cap B'C'$ são colineares.

Teorema 3 (O Dual do Teorema da Desargues). Sejam 6 retas distintas a, b, c, a', b' e c' do plano projetivo tais que os pontos de interseção $a \cap a'$, $b \cap b'$ e $c \cap c'$ são colineares. Então as 3 retas ligando $a \cap b$ com $a' \cap b'$, $a \cap c$ com $a' \cap c'$ e $b \cap c$ com $b' \cap c'$ são concorrentes.

Teorema 4 (Teorema de Pappus). Sejam A_1, A_2, A_3 pontos em uma reta r e B_1, B_2, B_3 pontos em uma outra reta s. Sejam $R = A_1B_2 \cap B_1A_2$, $Q = A_1B_3 \cap B_1A_3$ e $P = A_2B_3 \cap B_2A_3$. Então P, Q e R são colineares.



Teorema 5 (Teorema de Palcal). Sejam $A_1, A_2, A_3, B_1, B_2, B_3$ pontos em uma circunferência. Sejam $R = A_1B_2 \cap B_1A_2$, $Q = A_1B_3 \cap B_1A_3$ e $P = A_2B_3 \cap B_2A_3$. Então P, Q e R são colineares.



3 Pontos e retas polares

Definição 4. Dados um círculo C de centro O e um ponto $A \neq O$, a reta polar a A com respeito ao círculo C é a reta perpendicular a OA passando pela inversão do ponto A com respeito a C.

Definição 5. Dados um círculo \mathcal{C} de centro O e uma reta a que não passa por O, o ponto polar a a com respeito ao círculo \mathcal{C} é a inversão com relação a \mathcal{C} do pé da altura de O em a.

Lema 2. Sejam \mathcal{C} um círculo, A e B pontos distintos de seu centro. Se a e b são as respectivas retas polares de A e B, então $A \in b$ se e só se $B \in a$.

Proof. Propriedades básicas de inversão.

Definição 6. Dizemos que A e B são conjugados com relação a um círculo se um está na polar do outro.

Lema 3. Sejam A e B pontos conjugados com relação a um certo círculo C. Sejam C e D as duas interseções de C com a reta AB. Então (A, B; C, D) = -1.

4 Teoremas

Teorema 6 (Brianchon). Seja $A_1A_2A_3A_4A_5A_6$ um hexágono com um círculo incrito a ele, ou seja, seus lado são todos tangentes a um mesmo círculo. Então A_1A_4 , A_2A_5 e A_3A_6 são concorrentes.

Teorema 7 (Brokard). Sejam PQRS um quadrilátero inscrito em um círculo de centro O e A, B, C seus pontos diagonais, ou seja $A = PQ \cap RS$, $B = QR \cap SP$, $C = PR \cap QS$. Então O é o ortocentro de ABC.

References

[Luk] Projective geometry. https://imomath.com/index.cgi?page=projectiveGeometry. Accessed: 2025-01-29.