

Primeiro Dia

28 de Outubro de 2025

Problema 1. Esmeralda e Sara jogam um jogo escolhendo números. Primeiro, Esmeralda escolhe um número primo p. Depois, Sara escolhe um número inteiro positivo k. O objetivo de Esmeralda é encontrar um conjunto infinito S de números inteiros positivos múltiplos de p^k tal que **exatamente** os k últimos dígitos de todos os elementos de S coincidem e são **não nulos**. Por exemplo, exatamente os três últimos dígitos de 9012345, 5345, 345, 15345 coincidem e são não nulos.

Prove que Esmeralda pode escolher um primo p para cumprir seu objetivo, independentemente da escolha de Sara.

Problema 2. Sejam a, b números inteiros tais que 1 < b < a. Suponha que

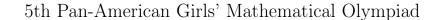
$$(a^2-1)(b^2-1)$$

é um quadrado perfeito.

- a) Demonstre que a + b é composto.
- b) Se a-b é primo, demonstre que 6ab-3 é um quadrado perfeito.

Problema 3. Seja ABC um triângulo com AB < AC e com circunferência circunscrita Γ. Seja M o ponto médio de BC. A mediatriz do segmento BC intersecta a reta AB em Y e a reta AC em X. Seja ω a circunferência que passa por B, X e M. As circunferências ω e Γ se intersectam em Z, com $Z \neq B$. Seja N a interseção da reta AZ com a reta XY. Mostre que N é o ponto médio de XY.

Duração: 4 horas e 30 minutos Cada problema vale 7 pontos



Segundo Dia

29 de Outubro de 2025

Problema 4. Seja ABC um triângulo acutângulo e seja M o ponto médio de AC. Seja Γ a circunferência de centro M que passa por A. A reta BM intersecta Γ em D e E, onde D está dentro de ABC e E está fora de ABC. Seja r a reta perpendicular a BC que passa por B, e seja F a interseção de r com a reta AD. Demonstre que a reta CF é tangente à circunferência ω que passa pelos pontos B, C e E.

Problema 5. Alice e Beatriz jogam em turnos, colocando peças retangulares em um tabuleiro 2025×2025 . Alice joga primeiro. Uma jogada consiste em colocar uma peça no tabuleiro cobrindo uma quantidade inteira de casas. Não é permitido jogar uma peça do mesmo tamanho que a peça colocada pela oponente no turno imediatamente anterior. Cada peça deve ter todos os lados sobre as linhas do tabuleiro e não é permitido que as peças se sobreponham. Existem infinitas peças de cada tamanho possível, mas nenhuma de tamanho 2025×2025 . Perde quem não consegue realizar uma jogada válida. Determine se existe uma estratégia ganhadora e, se existir, quem a possui.

Observação: Uma peça de tamanho $a \times b$ é igual a uma peça $b \times a$.

Problema 6. Uma sequência estritamente crescente de inteiros $(a_n)_{n\geq 1}$ é sertaneja se, para todo n,

$$a_{n+1} \le a_n + 3.$$

Suponha que em alguma sequência sertaneja não existam índices i, j, k, l, distintos dois a dois, tais que

$$a_i + a_j + a_k = a_l.$$

Demonstre que, ao dividir cada termo dessa sequência por 3, existe algum resto (0,1 ou 2) que não aparece.

Duração: 4 horas e 30 minutos Cada problema vale 7 pontos