

Primeiro dia

29 de setembro de 2025

Problema 1. Considere dois conjuntos $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{R}^2$ que satisfazem as seguintes três condições:

- 1. $(n,1) \in \mathcal{P}$ para todo $n \in \mathbb{Z}$.
- 2. Se $(a,b) \in \mathcal{P}$, então $(a,0) \in \mathcal{Q}$.
- 3. Se um trapézio tem dois lados paralelos ao eixo-Y, com dois vértices em \mathcal{P} e os outros dois vértices em \mathcal{Q} , então o ponto de interseção de suas diagonais também está em \mathcal{P} .

Demonstre que $\mathbb{Q} \times \{0\} \subseteq \mathcal{Q}$.

Problema 2. Seja $F: \mathbb{R}^2 \to \mathbb{R}^2$ dada por $F(x,y) = (x+y-x^3,y-y^3)$. Defina $F^1 = F$ e $F^{n+1} = F \circ F^n$ para n > 1.

- a) Demonstre que se $|x| \le 1/2$ e $|y| \le 1/2$, então $\lim_{n \to \infty} F^n(x, y) = (0, 0)$.
- b) Demonstre que, para quaisquer K > 0, $\varepsilon > 0$, existem um inteiro positivo n e $(x_0, y_0) \in \mathbb{R}^2$ com $0 < |(x_0, y_0)| < \varepsilon$ tais que $|F^n(x_0, y_0)| > K|(x_0, y_0)|$.

Problema 3. Seja \mathcal{E} uma elipse com semieixos a > b e seja B uma extremidade do eixo menor da elipse. Para todo ponto P da elipse, defina m(P) como a maior distância de P a qualquer outro ponto da elipse; isto é, defina a função

$$m(P) = \max_{Q \in \mathcal{E}} PQ,$$

onde PQ denota a distância de P a Q.

- a) Demonstre que $m(B) \leq m(P)$ para todo ponto P da elipse.
- b) Determine o valor de m(B) em função de a e b.

Cada problema vale 10 pontos Tempo máximo: 4h 30m.

Segundo dia 30 de setembro de 2025

Problema 4. Encontre infinitas funções diferenciáveis $f: \mathbb{R}^2 \to \mathbb{R}$ tais que f(20, 25) = 2025 e, para quaisquer $x, y \in \mathbb{R}$, valha

$$(f(x,y))^3 + (f_x(x,y))^3 + (f_y(x,y))^3 = 3f(x,y)f_x(x,y)f_y(x,y).$$

Nota: $f_x = \frac{\partial f}{\partial x} e f_y = \frac{\partial f}{\partial y}$.

Problema 5. Seja n um inteiro positivo. No espaço das matrizes $n \times n$ com entradas reais, considere o subconjunto M_n das matrizes com entradas no conjunto $\{-1,1\}$. Demonstre que no mínimo 25% das matrizes em M_n são invertíveis.

Problema 6. Demonstre que existem números reais positivos C e t, com t > 1, tais que se $n \ge 2$ e S é um conjunto de 2n pontos do plano em posição geral, com n pontos vermelhos e n pontos azuis, então há pelo menos Cn^t triângulos com dois vértices vermelhos e um vértice azul cujo interior não contém nenhum ponto de S.

Nota: Um conjunto de pontos é dito em posição geral se não há três pontos colineares.